PL EN


Preferences help
enabled [disable] Abstract
Number of results
2004 | 51 | 3 | 665-671
Article title

Structural and functional changes of bovine carbonic anhydrase as a consequence of temperature.

Content
Title variants
Languages of publication
EN
Abstracts
EN
The temperature dependence of the activity and structure of the enzyme carbonic anhydrase was studied. The Arrhenius plot shows a jump which is seen usually in proteins with more than one subunit or with one subunit but more than one domain. Since carbonic anhydrase has only one subunit with one domain, the fine conformational changes of the protein motifs could only be detected through circular dichroism polarimetry. It seems that the jump in Arrhenius plot is a result of some slight structural changes in the secondary and tertiary structures of the enzyme.
Publisher

Year
Volume
51
Issue
3
Pages
665-671
Physical description
Dates
published
2004
received
2003-11-03
revised
2004-01-07
accepted
2004-02-25
Contributors
author
  • Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
author
  • Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
author
  • Faculty of Science, Tarbiat-Modarres University, Tehran, Iran
  • Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
References
  • Allen B, Blum M, Cunningham A, Tu GC, Hofman T. (1990) A ligand-induced, temperature dependent conformational change in penicillopepcin. J Biol Chem.; 265: 5060-5.
  • Aronsson G, Martesson LG, Carlsson U, Jonsson BH. (1995) Folding and stability of the N-terminus of human carbonic anhydrase II. Biochemistry.; 34: 2153-62.
  • Bertini I, Luchinat C, Pieratelli R, Vila AJ. (1992) Interaction of acetate and formate with Co-carbonic anhydrase. An NMR study. Eur J Biochem.; 208: 607-15.
  • Biosca JA, Travers F, Barman TE. (1983) A jump in an Arrhenius plot can be consequence of phase transition. FEBS Lett.; 153: 217-20.
  • Freskgard PO, Martensson LG, Jonasson P, Jonasson BH, Carlsson U. (1994) Assignment of the contribution of the Trp residues to the circular dichroism spectrum of human carbonic anhydrase II. Biochemistry.; 33: 14281-8.
  • Hakansson K, Carlsson M, Svensson LA, Liljas A. (1992) Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol.; 227: 1192-204.
  • Kelly SM, Price NC. (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta.; 1338: 161-85.
  • Lavecchia R, Zugaro M. (1991) Thermal denaturation of bovine carbonic anhydrase. FEBS Lett.; 292: 162-4.
  • Lehtonen J, Shen B, Vihinen M, Casini A, Scozzafava A, Supuran CT, Parkkila A-K, Saarnio J, Kivela AJ, Waheed A, Sly WS, Parkkila S. (2004) Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family. J Biol Chem.; 279: 2719-27.
  • Liljas A, Hakansson K, Jonsson BH, Xue Y. (1994) Inhibition and catalysis of carbonic anhydrase. Eur J Biochem.; 219: 1-10.
  • Lindskog S. (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther.; 74: 1-20.
  • Lindskog S, Handerson LE, Kannan KK, Liljas A, Nyman PO, Strandberg B. (1971) Carbonic anhydrase. In The Enzymes, Boyer PD, ed; 5: pp 587-665.
  • Marthasarathy P, Johnson WC Jr. (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem.; 167: 76-85.
  • Massey V, Curti B, Ganther H. (1966) A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis. J Biol Chem.; 241: 2347-57.
  • Meldrum NU, Roughton FJW. (1933) Carbonic anhydrase; its preparation and properties. J Physiol (London).; 80: 113-41.
  • Moosavi-Nejad SZ, Rezaei-Tavirani M, Padiglia A, Floris G, Moosavi-Movahedi AA. (2001) Amine oxidase from lentil seedling: energetic domains and temperature effect on activity. J Protein Chem.; 20: 405-11.
  • Pocker Y, Stone JT. (1967) The catalytic versatility of erythrocyte carbonic anhydrase III: Kinetic studies of the enzyme catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry.; 6: 668-78.
  • Protasevich I, Ranjbar B, Labachov V, Makarov A, Gilli R, Briand C, Lafitte D, Haiech J. (1997) Conformational and thermal denaturation of apocalmodulin: role of electrostatic mutations. Biochemistry.; 36: 2017-24.
  • Sarraf NS, Saboury AA, Moosavi-Movahedi AA. (2002) Product inhibition study on carbonic anhydrase using spectroscopy and calorimetry. J Enzyme Inhib Med Chem.; 17: 203-6.
  • Schippers PH, Dekkers HPJM. (1981) Direct determination of absolute circular dichroism data and calibration of commercial instrument. Anal Chem.; 53: 778-88.
  • Sly WS, Peiyi HY. (1995) Human carbonic anhydrase and carbonic anhydrase deficiencies. Annu Rev Biochem.; 64: 375-401.
  • Supuran CT, Conroy CW, Maren TH. (1997) Is cyanate a carbonic anhydrase substrate? Proteins Struct Func Genet.; 27: 272-8.
  • Supuran CT, Scozzafava A. (2000) Carbonic anhydrase inhibitors and their therapeutic potential. Exp Opin Ther Patent.; 10: 575-600.
  • Supuran CT, Scozzafava A. (2001) Carbonic anhydrase inhibitors. Curr Med Chem-Imm Endoc Metab Agents; 1: 61-97.
  • Supuran CT, Briganti F, Tilli D, Chegwidden WR, Scozzafava A. (2001) Carbonic anhydrase inhibitors: Sulfonamides as antitumor agents? Bioorg Med Chem.; 9: 703-14.
  • Supuran CT, Scozzafava A, Casini A. (2003) Carbonic anhydrase inhibitors. Med Res Rev.; 23: 146-89.
  • Takakuwa T, Konno T, Meguro H. (1985) A new standard substance for calibration of circular dichroism: Ammonium d-10-camphorsulfonate. Anal Sci.; 1: 215-8.
  • Wong KP, Hamlin LM. (1974) Acid denaturation of bovine carbonic anhydrase B. Biochemistry.; 13: 2678-82.
  • Yang JT, Wu CSC, Martinez HM. (1986) Calculation of protein conformation from circular dichroism. Meth Enzymol.; 130: 208-78.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv51i3p665kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.