Preferences help
enabled [disable] Abstract
Number of results
2004 | 51 | 3 | 587-607
Article title

Viroids: unusual small pathogenic RNAs.

Title variants
Languages of publication
Viroids are small (about 300 nucleotides), single-stranded, circular, non-encapsidated pathogenic RNA molecules. They do not code for proteins and thus depend on plant host enzymes for their replication and other functions. They induce plant diseases by direct interaction with host factors but the mechanism of pathogenicity is still unknown. They can alter the expression of selected plant genes important for growth and development. Viroids belong to two families, the Avsunviroidae and the Pospiviroidae. Viroids of the Avsunviroidae family adopt a branched or quasi rod-like secondary structure in their native state. Members of the Pospiviroidae family adopt a rod-like secondary structure. In such native structures five structural/functional domains have been identified: central (C), pathogenicity, variable and two terminal domains. The central conserved region (CCR) within the C domain characterizes viroids of the Pospiviroidae. Specific secondary structures of this region play an important role in viroid replication and processing. Viroids of the Avsunviroidae family lack a CCR but possess self-cleaving properties by forming hammerhead ribozyme structures; they accumulate and replicate in chloroplasts, whereas members of the Pospiviroidae family have a nuclear localization. Viroid replication occurs via a rolling circle mechanism using either a symmetric or asymmetric pathway in three steps, RNA transcription, processing and ligation.
Physical description
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Ambrós S, Hernández C, Flores R. (1999) Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. J Gen Virol.; 80: 2239-52.
  • Baumstark T, Riesner D. (1995) Only one of four possible secondary structures of the central conserved region of potato spindle tuber viroid is a substrate for processing in a potato nuclear extract. Nucleic Acids Res.; 23: 4246-54.
  • Baumstark T, Schröder ARW, Riesner D. (1997) Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. EMBO J.; 16: 599-610.
  • Bussière F, Ouellet J, Côte F, Levesque D, Perreault JP. (2000) Mapping in solution shows the peach latent mosaic viroid to posses a new pseudoknot in a complex, branched secondary structure. J Virol.; 74: 2647-54.
  • Candresse T, Diener TO, Owens RA. (1990) The role of the viroid conserved central region in the cDNA activity. Virology.; 175: 232-7.
  • Candresse T, Góra-Sochacka A, Zagórski W. (2001) Restoration of secondary hairpin II is associated with restoration of infectivity of a non-viable recombinant viroid. Virus Res.; 75: 29-34.
  • Côte F, Levesque D, Perreault JP. (2001) Natural 2',5'-phosphodiester bonds found at the ligation sites of peach latent mosaic viroid. J. Virol.; 75: 19-25.
  • Daròs JA, Flores R. (2002) A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. EMBO J.; 21: 749-59.
  • De la Peña M, Flores R. (2002) Chrysanthemum chlorotic mottle viroid RNA: dissection of the pathogenicity determinant and comparative fitness of symptomatic and non-symptomatic variants. J Mol Biol.; 321: 411-21.
  • De la Peña M, Navarro B, Flores R. (1999) Mapping the molecular determinant of pathogenicity in a hammerhead viroid: a tetraloop within the in vivo branched RNA conformation. Proc Natl Acad Sci USA.; 96: 9960-5.
  • Diener TO. (1986) Viroid processing: a model involving the central conserved region and hairpin I. Proc Natl Acad Sci USA.; 83: 58-62.
  • Diener TO. (1987) Potato spindle tuber. In The Viroids. Diener TO, ed, pp 221-3. Plenum, New York.
  • Diener TO. (2001) The viroid: biological oddity or evolutionary fossil? Adv Virus Res.; 57: 137-84.
  • Diener TO, Hammond RW, Black T, Katze MG. (1993) Mechanism of viroid pathogenesis: Differential activation of the interferon-induced, double-stranded RNA-activated, Mr 68 000 protein kinase by viroid strains of varying pathogenicity. Biochimie.; 75: 533-8.
  • Ding B, Myoung-Ok K, Hammond R, Owens R. (1997) Cell-to-cell movement of potato spindle tuber viroid. Plant J.; 12: 931-6.
  • Eigen M. (1993) The origin of genetic information: viruses as models. Gene.; 135: 37-47.
  • Elena SF, Dopazo J, Flores R, Diener TO, Moya A. (1991) Phylogeny of viroids, viroidlike satellite RNAs, and the viroidlike domain of hepatitis δ virus RNA. Proc Natl Acad Sci USA.; 88: 5631-4.
  • Fadda Z, Daros JA, Fagoaga C, Flores R, Duran-Vila N. (2003) Eggplant latent viroid, the candidate type species for a new genus within the family Avsunviroidae (hammerhead viroids). J Virol.; 77: 6528-32.
  • Fels A, Hu K, Riesner D. (2001) Transcription of potato spindle tuber virioid by RNA polymerase II starts predomonantly at two specific sites. Nucleic Acids Res.; 29: 4589-97.
  • Flores R. (2001) A naked plant-specific RNA ten-fold smaller than the smallest viral RNA: the viroid. C R Acad Sci.; 324: 943-52.
  • Flores R, Randles JW, Bar-Joseph M, Diener TO. (1998) A proposed scheme for viroid classification and nomenclature. Arch Virol.; 143: 623-9.
  • Flores R, Daros JA, Hernandez C. (2000) Avsunviroidae family: viroids containing hammerhead ribozymes. Adv Virus Res.; 55: 271-323.
  • Gast FU, Kempe D, Spieker RL, Sanger Hl. (1996) Secondary structure probing of potato spindle tuber viroid (PSTVd) and sequence comparison with other small pathogenic RNA replicons provides evidence for central non-canonical base-pairs, large A-rich loops, and a terminal branch. J Mol Biol.; 262: 652-70.
  • Gomez G, Pallas V. (2001) Identification of an in vitro ribonucleoprotein complex between a viroid RNA and phloem protein from cucumber plants. Mol Plant-Microbe Interact.; 14: 910-3.
  • Gozmanova M, Denti MA, Minkov IN, Tsagris M, Tabler M. (2003) Characterization of the RNA motif responsible for the specific interaction of potato spindle tuber viroid RNA (PSTVd) and the tomato protein Virp1. Nucleic Acids Res.; 31: 5534-43.
  • Gora A, Candresse T, Zagorski W. (1996) Use of intramolecular chimeras to map molecular determinants of symptoms severity of potato spindle tuber viroid (PSTVd). Arch Virol.; 141: 2045-55.
  • Gora A, Kierzek A, Candresse T, Zagorski W. (1997) The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA.; 3: 68-74.
  • Gross HJ, Domdey H, Lossow C, Jank P, Raba M, Alberty H, Sanger HL. (1978) Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature.; 273: 203-8.
  • Hammond RW. (1994) Agrobacterium-mediated inoculation of PSTVd cDNAs onto tomato reveals the biological effects of apparently lethal mutations. Virology.; 201: 36-45.
  • Hammond RW, Zhao Y. (2000) Characterization of a tomato protein kinase gene induced by potato spindle tuber viroid. Mol Plant-Microbe Interact.; 13: 903-10.
  • Harders J, Lucacs N, Robert-Nicoud M, Jovin TM, Riesner D. (1989) Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy. EMBO J.; 8: 3941-9.
  • Hecker R, Wang Z, Steger G, Riesner D. (1988) Analysis of RNA structures by temperature-gradient gel electrophoresis: viroid replication and processing. Gene.; 72: 59-74.
  • Hiddinga HI, Crum CJ, Hu Y, Roth DA. (1988) Viroid-induced phosphorylation of a host protein related to a dsRNA-dependent protein kinase. Science.; 241: 451-3.
  • Hu Y, Feldstein PA, Bottino PJ, Owens RA. (1996) Role of the variable domain in modulating potato spindle tuber viroid replication. Virology.; 219: 45-56.
  • Hu Y, Feldstein PA, Hammond J, Hammond RW, Bottino PJ, Owens RA. (1997) Destabilisation of potato spindle tuber viroid by mutations in the left terminal loop. J Gen Virol.; 78: 1199-206.
  • Itaya A, Matsuda Y, Gonzales RA, Nelson RS, Ding B. (2002) Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol Plant-Microbe Interact.; 15: 990-9.
  • Keese P, Symons RH. (1985) Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci USA.; 82: 4582-6.
  • Lafontaine D, Beaudry D, Marquis P, Perreault J-P. (1995) Intra- and intermolecular nonenzymatic ligations occur within transcripts derived from the peach latent mosaic viroid. Virology.; 212: 705-9.
  • Loss P, Schmitz M, Steger G, Riesner D. (1991) Formation of a termodynamically metastable structure containig hairpin II is critical for infectivity of potato spindle tuber viroid RNA. EMBO J.; 10: 719-27.
  • Malfitano M, Di Serio F, Covelli L, Ragozzino A, Hernandez C, Flores R. (2003) Peach latent viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology.; 313: 492-501.
  • Maniataki E, Tabler M, Tsagris M. (2003) Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with host protein VirP1. RNA.; 9: 346-54.
  • Marcos JF, Flores R. (1992) Characterization of RNAs specific to avocado sunblotch viroid synthesized in vitro by a cell-free system from infected avocado leaves. Virology.; 186: 481-8.
  • Martinez de Alba AE, Sgesser R, Tabler M, Tsagris M. (2003) A bromodomein-containing protein from tomato specifically binds potato spindle tuber viroid RNA in vitro and in vivo. J Virol.; 77: 9685-94.
  • Martinez-Soriano JP, Galindo-Alonso J, Maroon CJM, Yucel I, Smith DR, Diener TO. (1996) Mexican papita viroid: putative ancestor of crop viroids. Proc Natl Acad Sci USA.; 93: 9397-401.
  • Navarro B, Flores R. (1997) Chryzanthemum chlorotic mottle viroid: unusal structural properties of a subgroup of viroids with hammerhead ribozymes. Proc Natl Acad Sci USA.; 94: 11262-7.
  • Navarro JA, Flores R. (2000) Characterisation of the initiation sites of both polarity strands of a viroid RNA reveals a motif conserved in sequence and structure. EMBO J.; 19: 2662-70.
  • Navarro JA, Vera A, Flores R. (2000) A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology.; 268: 218-25.
  • Owens RA, Steger G, Hu Y, Fels A, Hammond RW, Riesner D. (1996) RNA structural features responsible for potato spindle tuber viroid pathogenicity. Virology.; 222: 144-58.
  • Owens RA, Blackburn M, Ding B. (2001) Possible involvement of the phloem lectin in long-distance viroid movement. Mol Plant-Microbe Interact.; 14: 905-9.
  • Pelchat M, Rocheleau L, Perreault J, Perreault JP. (2003) SubViral RNA: a database of the smallest known auto-replicable RNA species. Nucleic Acids Res.; 31: 444-5.
  • Qi Y, Ding B. (2002) Replication of Potato spindle tuber viroid in cultured cells of tobacco and Nicotiana benthamiana: the role of specific nucleotides in determining replication levels for host adaptation. Virology.; 302: 445-56.
  • Qi Y, Ding B. (2003a) Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell.; 15: 2566-77.
  • Qi Y, Ding B. (2003b) Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding RNA. Plant Cell.; 15: 1360-74.
  • Qu F, Heinrich C, Loss P, Steger G, Tien P, Riesner D. (1993) Multiple pathways of reversion in viroid for conservation of structural elements. EMBO J.; 12: 2129-39.
  • Riesner D, Gross HJ. (1985) Viroids. Annu Rev Biochem.; 54: 531-64.
  • Riesner D, Henco K, Rokohl U, Klotz G, Kleinschmidt AK, Domdey H, Jank P, Gross HJ, Sanger HL. (1979) Structure and structure formation of viroids. J Mol Biol.; 133: 85-115.
  • Rodrigez MJB, Randles JW. (1993) Coconut cadang-cadang viroid (CCCVd) mutants associated with severe disease vary in both the pathogenicity domain and the central conserved region. Nucleic Acids Res.; 21: 2771.
  • Sano T, Candresse T, Hammond RW, Diener TO, Owenss RA. (1992) Identification of multiple structural domains regulating viroid pathogenicity. Proc Natl Acad Sci USA.; 89: 10104-8.
  • Schmitz A, Riesner D. (1998) Correlation between bending of the VM region and pathogenicity of different potato spindle tuber viroid strains. RNA.; 4: 1295-303.
  • Schnülzer M, Hass B, Ramm K, Hofmann H, Sänger HL. (1985) Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTVd). EMBO J.; 4: 2181-90.
  • Schrüder AR, Riesner D. (2002) Detection and analysis of hairpin II, an essential metastable structural element in viroid replication intermediates. Nucleic Acids Res.; 30: 3349-59.
  • Schumacher J, Sänger HL, Riesner D. (1983) Subcellular localization of viroids in highly purified nuclei from tomato leaf tissue. EMBO J.; 2: 1549-55.
  • Steger G, Tabler M, Brüggemann W, Colpan M, Klotz G, Sänger HL, Riesner D. (1992) Structure of viroid replicative intermediates: physico-chemical studies on SP6 transcripts of cloned oligomeric potato spindle tuber viroid. Nucleic Acids Res.; 14: 9613-30.
  • Tabler M, Sänger HL. (1984) Infectivity studies on different potato spindle tuber viroid (PSTVd) RNAs synthesized in vitro with SP6 transcription system. EMBO J.; 4: 2191-8.
  • Tsagris M, Tabler M, Sänger HL. (1987) Oligomeric potato spindle tuber viroid (PSTV) RNAs does not process autocatalytically under conditions where other RNAs do. Virology.; 157: 227-31.
  • Tsagris M, Tabler M, Sänger HL. (1991) Ribonuclease T1 generates circular RNA molecules from viroid-specific RNA transcripts by cleavage and intramolecular ligation. Nucleic Acids Res.; 19: 1605-12.
  • Visvader JE, Symons RH. (1985) Eleven new sequence variants of the citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res.; 13: 2907-20.
  • Wassenegger M, Spieker RL, Thalmeir S, Gast F-U, Riedel L, Sänger HL. (1996) A single nucleotide substitution converts potato spindle tuber viroid (PSTVd) from noninfectious to an infectious RNA for Nicotiana tabacum. Virology.; 226: 191-7.
  • Warrilow D, Symons RH. (1999) Citrus exocortis viroid RNA is associated with the largest subunit of RNA polymerase II in tomato in vivo. Arch Virol.; 144: 2367-75.
  • Zhu Y, Green L, Woo Y-M, Owens R, Ding B. (2001) Cellular basis of potato spindle tuber viroid systemic movement. Virology.; 279: 69-77.
  • Zhu Y, Qi Y, Xun Y, Owens R, Ding B. (2002) Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiol.; 130: 138-46.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.