Preferences help
enabled [disable] Abstract
Number of results
2004 | 51 | 1 | 33-49
Article title

Solution structure of conformationally restricted vasopressin analogues.

Title variants
Languages of publication
In recent years, a massive effort has been directed towards designing potent and selective antagonists of neurohypophyseal hormones substituted at position 3. Modification of vasopressin at position 3 with 4,4'-biphenylalanine results in pharmacologically inactive analogues. Chemically, this substitution appears to vary only slightly from those previously made by us (1-Nal or 2-Nal), which afforded potent agonists of V2 receptors. In this situation, it seemed worthwhile to study the structure of the analogues with 4,4'-biphenylalanine (BPhe) at position 3 in aqueous solution using NMR spectroscopy and total conformational analysis. This contribution is part of extensive studies aimed at understanding spatial structures of 3-substituted [Arg8]vasopressin analogues of different pharmacological properties. NMR data were used to calculate 3D structures for all the analogues using two methods, EDMC with the ECEPP/3 force field, and molecular dynamic with the simulated annealing (SA) algorithm. The structures obtained by the first method show a better fit between the NMR spectral evidence and the calculation for all the peptides.
Physical description
  • Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
  • Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
  • Bartles C, Xia T, Billeter M, Günter P, Wütrich K. (1995) The program XEASY for the computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR.; 5: 1-10.
  • Bax A, Davis DG. (1985a) Practical aspects of two-dimensional transverse NOE spectroscopy. J Magn Reson.; 63: 207-13.
  • Bax A, Freeman R. (1985b) Enhanced NMR resolution by restricting the effective sample volume. J Magn Reson.; 65: 355-60.
  • Braunschweiler L, Ernst RR. (1983) Coherence transfer by isotropic mixing: Application to correlation spectroscopy. J Magn Reson.; 53: 521-8.
  • Brooks B, Bruccoleri R, Olafson BO, States DJ, Swaminathan S, Karplus M. (1993) CHARMM: a program for macromolecular energy minimization and dynamics calculations. Comput Chem.; 4: 187-17.
  • Brünger AT. (1993) The X-PLOR Software Manual. Version 3.1, Yale University Press, New Haven, CT.
  • Bystrov VF. (1976) Spin-spin coupling and the conformational states of peptide systems. Progr NMR Spectrosc.; 10: 41-81.
  • Czaplewski C, Kaźmierkiewicz R, Ciarkowski J. (1998) Vasopressin V2 receptor/bioligand interactions. Lett Peptide Sci.; 5: 333-5.
  • Dorman DE, Bovey FA. (1973) Carbon magnetic resonance spectroscopy. The spectrum of proline in oligopeptides. J Org Chem.; 38: 2379-83.
  • Delaglio F, Grzesiek S, Geerten WV, Zhu G, Pfeifer J, Bax A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR.; 6: 277-93.
  • Dyson HJ, Rance M, Hoighten RA, Lerner RA, Wright PE. (1988) Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol.; 201: 161-200.
  • Gottlieb HE, Kotlyar V, Nudelman A. (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem.; 62: 7512-5.
  • Groth M, Malicka J, Czaplewski C, Liwo A, Łankiewicz L, Wiczk W. (1999) Maximum entropy approach to the determination of solution conformation of flexible polypeptides by global conformational analysis and NMR spectroscopy - application to DNS1-c[D-A2bu2, Trp4, Leu5]-enkephalin and DNS1-c[D-A2bu2, Trp4, D-Leu5]- enkephalin. J Biomol NMR.; 15: 315-30.
  • Grzonka Z, Gwizdała E, Kasprzykowski F, Liwo A, Łankiewicz L, Łubkowska L, Galaktionov SG, Tseitin VM. (1991) Studies on the interaction of neurohypophyseal hormones with lipids. In Peptides 90, Giralt E, Andreu ,. eds, pp 488-9. ESCOM Science Publishers B.V., Leiden.
  • Güntert P, Wüthrich K. (1991) Improved efficiency of protein structure calculation from NMR data using program DIANA with redundant dihedral angle constraints. J Biomol NMR.; 1: 447-56.
  • Güntert P, Braun W, Wüthrich K. (1991) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol.; 217: 517-30.
  • Hempel JC. (1987) The conformation of neurohypophyseal hormones. In The Peptides: Analysis, Synthesis, Biology. Smith CW, eds, vol. 8, pp 209-37., Academic Press, New York.
  • Hlavacek J. (1987) Important structural modifications. Noncoded amino acid. In Handbook of Neurohypophyseal Hormone Analogs. Jošt K, Lebl M, Brtnik F, eds, vol. 1, pp 109-29. CRC Press Inc., Boca Raton, Florida.
  • Hruby VJ, Lebl MI. (1987) Conformational properties of neurohypophyseal hormone analogs in solutution as determined by NMR and laser RAMAN spectroscopies. In Handbook of Neurohypophyseal Hormone Analogs. Jošt K, Lebl M, Brtnik F. eds., pp. 105-55, vol. 1, CRC Press Inc., Boca Raton, Florida.
  • Kay LE, Keifer P, Saarinen T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc.; 114: 10663-5.
  • Kaźmierkiewicz R, Czaplewski C, Lammek B, Ciarkowski J. (1997) Molecular modeling of the neurophysin I/oxytocin complex. J Comput Aided Mol Des.; 11: 9-20.
  • Kontaxis G, Stonehouse J, Laue ED, Keeler J. (1994) The sensitivity of experiments which use gradient pulses for coherence-pathway selection. J Magn Reson Ser A.; 111: 70-6.
  • Koradi R, Billeter M, Wüthrich K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph.; 14: 51-5.
  • Koźminski W. (1998) The new active-coupling-pattern tilting experiment for an efficient and accurate determination of homonuclear coupling constants. J Magn Reson.; 134: 189-93.
  • Lammek B, Czaja M, Derdowska I, Łempicka E, Sikora P, Szkróbka W, Stojko R, Kupryszewski G. (1997) Influence of L-naphthylalanine in position 3 of AVP and its analogues on their pharmacological properties. J Pept Res.; 49: 261-8.
  • Langfeldt LA, Cooley ME. (2003) Syndrome of inappropriate antidiuretic hormone secretion in malignancy: review and implications for nursing management. Clin J Oncol Nurs.; 7: 425-30.
  • Langs DA, Smith GD, Stezowski JJ, Hughes RE. (1986) Structure of pressinoic acid: the cyclic moiety of vasopressin. Science.; 232: 1240-2.
  • László FA, László FJ, de Wied D. (1991) Pharmacology and clinical perspectives of vasopressin antagonists. Pharmacol Rev.; 43: 73-108.
  • Lewis PN, Mamony FA, Sheraga HA. (1973) Chain reversals in proteins. Biochim Biophys Acta.; 303: 211-29.
  • Liwo A, Tempczyk A, Oldziej S, Shenderovich MD, Hruby VJ, Talluri S, Ciarkowski J, Kasprzykowski F, Łankiewicz L, Grzonka Z. (1995) Exploration of the conformational space of oxytocin and arginine-vasopressin using the electrostatically driven Monte Carlo and molecular dynamics methods. Biopolymers.; 38: 157-75.
  • Manning M, Balaspiri L, Moehring J, Haldar J, Sawyer WH. (1976) Synthesis and some pharmacological properties of deamino(4-threonine, 8-D-arginine)vasopressin and deamino(8-D-arginine)vasopressin, highly potent and specific antidiuretic peptides, and (8-D-arginine)vasopressin and deamino-arginine-vasopressin. J Med Chem.; 19: 842-5.
  • Manning M, Bańkowski K, Sawyer WH. (1987) Selective agonists and antagonists of vasopressin. In Vasopressin, Gash DW, Boer GJ, eds, pp 335-68. Plenum Publishing Corporation, New York.
  • Manning M, Cheng LL, Stoev S, Klis WA, Nawrocka E, Olma A, Sayer WH, Wo NC, Chan WY. (1997) Position three in vasopressin antagonist tolerates conformationally restricted and aromatic amino acid substitutions: a striking contrast with vasopressin agonists. J Pept Sci.; 3: 31-46.
  • Marquard DW. (1963) An algorithm for least squares estimation of nonelinear parameters. J Soc Industr Appl Math.; 11: 431-41.
  • Massefski WJr, Bolton PH. (1985) Quantitative analysis of nuclear Overhauser effects. J Magn Reson.; 65: 526-30.
  • McDonald IK, Thornton JM. (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol.; 238: 777-93.
  • Meadows RP, Post CB, Luxon BA, Gorenstein DG. (1994) MORASS 2.1. Purdue University, West Lafayette.
  • Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA. (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm with application to proline-containing peptides. J Phys Chem.; 96: 6472-84.
  • Palmer III AG, Cavanagh J, Wright PE, Rance M. (1991) Sensitivity improvement in proton-detected two dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson.; 93: 151-70.
  • Petsko GA. (1996) Not just your average structures. Nat Struct Biol.; 3: 565-6.
  • Post CB, Meadows RP, Gorenstein DG. (1990) On the evaluation of interproton distance for 3-dimensional structure determination by NMR using a relaxation rate matrix analysis. J Am Chem Soc.; 112: 6796-803.
  • Ripoll DR, Scheraga HA. (1988) On the multiple-minima problem in the conformational analysis of polypeptides. II. An electronically driven Monte Carlo method - tests on poly (L-alanine). Biopolymers.; 27: 1283-303.
  • Schmidt JM, Ohlenschläger O, Rüterjans H, Grzonka Z, Kojro E, Pavo I, Fahrenholz F. (1991) Conformation of [8-arginine]vasopressin and V1 antagonists in dimethyl sulfoxide solution derived from two-dimensional NMR spectroscopy and molecular dynamics simulation. Eur J Biochem.; 201: 355-71.
  • Skala G, Smith CW, Taylor CJ, Ludens JH. (1984) A conformationally constrained vasopressin analog with antidiuretic antagonistic activity. Science.; 226: 443-5.
  • Späth H. (1980) Cluster analysis algorithms. J Comput Chem.; 10: 209-20.
  • Stoev S, Cheng LL, Olma A, Klis WA, Manning M, Wo NC, Chan WY. (1999) An investigation of position 3 in arginine vasopressin with aliphatic, aromatic, conformationally-restricted, polar and charged amino acids. J Pept Sci.; 5: 141-53.
  • Vila J, Williams RL, Vasquez M, Scheraga HA. (1991) Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor. Proteins.; 10: 199-218.
  • Walse B, Kihlberg J, Drakenberg B. (1998) Conformation of desmopressin, an analogue of the peptide hormone vasopressin, in aqueous solution as determined by NMR spectroscopy. Eur J Biochem.; 252: 428-40.
  • Wishart DS, Bigam CG, Holm A, Hogdes RS, Sykes BD. (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR.; 5: 67-81.
  • Wüthrich K, Billeter M, Braun W. (1983) Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol.; 169: 949-61.
  • Wüthrich K, Billeter M, Braun W. (1984) Polypeptide secondary structure determination y nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol.; 180: 715-40.
  • Yu C, Yang TH, Yeh CJ, Chuang LC. (1992) Combined use of NMR, distance geometry, and restrained energy minimization for the conformational analysis of 8-lysinevasopressin. Can J Chem.; 70: 1950-5.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.