PL EN


Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 4 | 1273-1281
Article title

Characterisation of Mesorhizobium huakuii cyclic β-glucan.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Periplasmic and extracellular glucans of Mesorhizobium huakuii were isolated and characterized by compositional and MALDI-TOF analyses, as well as 1H and 13C NMR spectroscopy. It was shown that M. huakuii produces a cyclic β-glucan composed entirely of nonbranched glucose chains and unmodified by nonsugar substituents. The degree of polymerisation of the cyclic oligosaccharides was estimated to be in the range from 17 to 28. The most abundant glucan molecules contained 22 glucose residues. Glucose residues within the glucan were connected by β-(1,2) glycosidic linkages. The cyclic glucan produced by M. huakuii is quite similar to the periplasmic β-(1,2) glucans synthesized by Agrobacterium and Sinorhizobium genera. The synthesis of β-glucan in M. huakuii is osmoregulated and this glucan could function as an osmoprotectant in free living cells.
Publisher

Year
Volume
50
Issue
4
Pages
1273-1281
Physical description
Dates
published
2003
received
2003-10-07
revised
2003-11-25
accepted
2003-12-09
Contributors
author
  • Department of General Microbiology, Maria Curie-Sklodowska University, Lublin, Poland
  • Department of General Microbiology, Maria Curie-Sklodowska University, Lublin, Poland
References
  • Abe M, Amemura A, Higashi S. (1982) Studies on cyclic β-1,2-glucan obtained from the periplasmic space of Rhizobium trifolii cells. Plant Soil.; 64: 315-24.
  • Batley M, Redmond JW, Djordjevic SP, Rolfe BG. (1987) Characterisation of glycerophosphorylated cyclic beta-1,2-glucans from a fast growing Rhizobium species. Biochim Biophys Acta.; 901: 119-26.
  • Bhagwat AA, Mithöfer A, Pfeffer PhE, Kraus C, Spickers N, Hotchkiss, A, Ebel J, Keister DL. (1999) Further studies of the role of cyclic β-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesises cyclodecakis-(1-->3)-β-glucosyl. Plant Physiol.; 119: 1057-64.
  • Bohin JP. (2000) Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett.; 186: 11-9.
  • Breedveld MW, Miller KJ. (1994) Cyclic β-glucans of members of the family Rhizobiaceae. Microbiol Rev.; 58: 145-61.
  • Breedveld MW, Miller KJ. (1998) Cell-surface β-glucans. In Rhizobiaceae. Spaink HP, Kondorosi A, Hooykaas PJJ, eds, pp81-96. Kluwer Acad. Publ. Dordrecht, Boston, London.
  • Breedveld MW, Canter Cremers HJC, Batley M, Posthumus MA, Zevenhuizen LPTM, Wijffelman CA, Zehnder AJB. (1993) Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminsarum. J Bacteriol.; 175: 750-7.
  • Briones G, Iñón de Iannino N, Steinberg M, Ugalde RA. (1997) Periplasmic cyclic 1,2-β-glucan in Brucella spp. is not osmoregulated. Microbiology.; 143: 1115-24.
  • Cogez V, Talaga P, Lemoine J, Bohin J-P. (2001) Osmoregulated periplasmic glucans of Erwinia chrysanthemi. J Bacteriol.; 183: 3127-33.
  • Dell A. (1983) The cyclic structure of beta-D-(1-2)-linked D-glucans secreted by Rhizobia and Agrobacteria. Carbohydr Res.; 117: 185-200.
  • Dubois M, Gilles KA, Hamilton IK, Rebers PA, Smith F. (1956) Colorimetric method for determination of sugar and related substances. Anal Chem.; 28: 350-6.
  • Dylan T, Helinski DR, Ditta GS. (1990) Hypoosmotic adaptation in Rhizobium meliloti requires β-(1-->2)-glucan. J Bacteriol.; 172: 1400-8.
  • Estrella MJ, Pfeffer PE, Brouillette JN, Ugalde RA, Iñón de Iannino NI. (2000) Biosynthesis and structure of cell associated glucans in the slow growing Rhizobium loti strain NZP 2309. Symbiosis.; 29: 173-99.
  • Hisamatsu M, Yamada T, Higashiura T, Ikeda M. (1987) The production of acidic, O-acetylated cyclosophorans (cyclic (1-->2)-β-glucan) by Agrobacterium and Rhizobium species. Carbohydr Res.; 163: 115-22.
  • Hisamatsu M, Nomura S, Shutsrirung A, Obata H, Teranishi K, Yamada T, Nuswantara S, Yamashita M, Murooka Y. (1997) Structural characterisation of a new acidic exopolysaccharide and cyclic (1-->2) β-glucan produced by Rhizobium huakuii forming nodules on Astragalus sinicus. J Ferment Bioengineer.; 83: 315-20.
  • Komaniecka I, Choma A. (2003) Isolation and characterisation of cyclic β-glucan of Azorhizobium caulinodans. FEMS Microbiol Lett.; 227: 263-9.
  • Lee S, Seo D, Kim H-W, Jung S. (2001) Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-(1-->2)-(β-D-glucopyranosyl), by cyclic-(1-->2)-β-D-glucans (cyclosophoraoses), and by cyclomaltoheptaoses (β-cyclodextrins). Carbohydr Res.; 334: 119-26.
  • Lepek V, Navarro de Navarro Y, Ugalde RA. (1990) Synthesis of β(1-2)glucan in Rhizobium loti. Arch Microbiol.; 155: 35-41.
  • Lowry O, Rosebrough AL, Farr RJ, Randall RJ. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem.; 193: 265-75.
  • Miller KJ, Gore RS, Benesi AJ. (1988) Phosphoglycerol substituents present on the cyclic β-1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol.; 170: 4569-75.
  • Miller KJ, Gore RS. (1992) Cyclic β-1,6-1,3-glucans of Bradyrhizobium japonicum: functional analogs of the cyclic cyclic β-(1,2)-glucans of Rhizobium? Curr Microbiol.; 24: 101-4.
  • Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold VN. (1990) Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol.; 172: 136-42.
  • Miller KJ, Kennedy EP, Reinhold VN. (1986) Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science.; 231: 48-51.
  • Miller KJ, Reinhold VN, Weissborn AC, Kennedy EP. (1987) Cyclic glucans produced by Agrobacterium tumefaciens are substituted with sn-1-phosphoglycerol residues. Biochim Biophys Acta.; 901: 112-8.
  • Nuswantara S, Fuije M, Sukiman HI, Jamashita M, Jamada T, Murooka Y. (1997) Phylogeny of bacterial symbionts of leguminous tree Acacia mangium. J Ferment Bioeng.; 84: 511-8.
  • Rolin DB, Pfeffer PE, Osman SF, Szwergold RB, Kappler F, Benesi AJ. (1992) Structural studies of a phosphocholine substituted β-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta.; 1116: 215-25.
  • Schneider JE, Reinhold V, Rumley MK, Kennedy EP. (1979) Structural studies of the membrane-derived oligosaccharides of Escherichia coli. J Biol Chem.; 254: 10135-8.
  • Schulman H, Kennedy EP. (1979) Localisation of membrane-derived oligosaccharides in the outer envelope of Escherichia coli and their occurrence in other gram-negative bacteria. J Bacteriol.; 137: 686-8.
  • Stock JB, Rauch B, Roseman S. (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem.; 252: 7850-61.
  • Talaga P, Cogez V, Wieruszeski JM, Stahl B, Lemoine J, Lippens G, Bohin J-P. (2002) Osmoregulated periplasmic glucans of the free-living photosynthetic bacterium Rhodobacter sphaeroides. Eur J Biochem.; 269: 2464-72.
  • Usui T, Yamaoka N, Mastuda K, Tuzimura K, Sugiyama H, Seto S. (1973) 13C nuclear magnetic resonance spectra of glucobiose, glucotriose, and glucans. J Chem Soc Perkin Trans. I.; 1: 2425-32.
  • Vincent M. (1970) A Manual for the practical study of root-nodule bacteria. International biological programme, handbook no. 15 Blackwell, Oxford, Edinburgh.
  • York WS, McNeil M, Darvill AG, Albersheim P. (1980) Beta-2-linked glucans secreted by fast-growing species of Rhizobium. J Bacteriol.; 142: 243-8.
  • York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P. (1986) Isolation and characterisation of plant cell walls and cell wall components. Methods Enzymol.; 118: 3-40.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv50i4p1273kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.