Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 4 | 1245-1256
Article title

Plant purple acid phosphatases - genes, structures and biological function.

Title variants
Languages of publication
The properties of plant purple acid phosphatases (PAPs), metallophosphoesterases present in some bacteria, plants and animals are reviewed. All members of this group contain a characteristic set of seven amino-acid residues involved in metal ligation. Animal PAPs contain a binuclear metallic center composed of two irons, whereas in plant PAPs one iron ion is joined by zinc or manganese ion. Among plant PAPs two groups can be distinguished: small PAPs, monomeric proteins with molecular mass around 35 kDa, structurally close to mammalian PAPs, and large PAPs, homodimeric proteins with a single polypeptide of about 55 kDa. Large plant PAPs exhibit two types of structural organization. One type comprises enzymes with subunits bound by a disulfide bridge formed by cysteines located in the C-terminal region around position 350. In the second type no cysteines are located in this position and no disulfide bridges are formed between subunits. Differences in structural organisation are reflected in substrate preferences. Recent data reveal in plants the occurrence of metallophosphoesterases structurally different from small or large PAPs but with metal-ligating sequences characteristic for PAPs and expressing pronounced specificity towards phytate or diphosphate nucleosides and inorganic pyrophosphate.
Physical description
  • Institute of Biochemistry and Molecular Biology, Wrocław University, Wrocław, Poland
  • Institute of Biochemistry and Molecular Biology, Wrocław University, Wrocław, Poland
  • Institute of Biochemistry and Molecular Biology, Wrocław University, Wrocław, Poland
  • Allen SH, Nuttleman PR, Ketcham CM, Roberts RM. (1989) Purification and characterization of human bone tartrate-resistant acid phosphatase. J Bone Miner Res.; 4: 47-55.
  • Beck JL, McConaghie LA, Summors AC, Arnold WN, de Jersey J, Zerner B. (1986) Properties of a purple acid phosphatase from red kidney bean: a zinc-iron metalloenzyme. Biochim Biophys Acta.; 869: 61-8.
  • Buhi WC, Ducsay CA, Bazer FW, Roberts RM. (1982) Iron transfer between the purple phosphatase uteroferrin and transferrin and its possible role in iron metabolism of the fetal pig. J Biol Chem.; 257: 1712-3.
  • Campbell HD, Zerner B. (1973) A low-molecular-weight acid phosphatase which contains iron. Biochem Biophys Res Commun.; 54: 1498-03.
  • Duff SMG, Sarath G, Plaxton WC. (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant.; 90: 791-800.
  • Durmus A, Eicken C, Sift BK, Kratel A, Kappl R, Hütermann J, Krebs B. (1999a) The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas). Metal content and spectroscopic characterization. Eur J Biochem.; 260: 709-16.
  • Durmus A, Eicken C, Spener F, Krebs B. (1999b) Cloning and comparative modeling of two purple acid phosphatase isozymes from sweet potatoes (Ipomoea batatas). Biochim Biophys Acta.; 1434: 202-9.
  • Efstratiadis T, Moss DW. (1985) Tartrate-resistant acid phosphatase in human alveolar macrophages. Enzyme.; 34: 140-3.
  • Guex N, Peitsch MC. (1997) SWISS-MODEL and the Swiss-PDBViewer: an environment for comparative protein modeling. Electrophoresis.; 18: 2714-3.
  • Hayman AR, Warburton MJ, Pringle JA, Coles B, Chambers TJ. (1989) Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem J.; 261: 601-9.
  • Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM. (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development.; 122: 3151-2.
  • HaymanAR, BuneAJ, BradleyJR, RashbassJ, CoxTM. (2000) Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem.; 48: 219-28.
  • Hegeman CE, Grabau EA. (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol.; 126: 1598-108.
  • Kaija H, Alatalo SL, Haleen JM, Lindqvist YL, Schneider G, Väänäen HK, Vihko P. (2002) Phosphatase and oxygen radical-generating activities of mammalian purple acid phosphatase are functionally independent. Biochem Biophys Res Commun.; 292: 128-2.
  • Ketcham CM, Roberts RM, Simmen RC, Nick HS. (1989) Molecular cloning of the type 5, iron-containing, tartrate-resistant acid phosphatase from human placenta. J Biol Chem.; 264: 557-3.
  • Klabunde T, Stahl B, Suerbaum H, Hahner S, Karas M, Hillenkamp F, Krebs B, Witzel H. (1994) The amino acid sequence of the red kidney bean Fe(III)-Zn(II) purple acid phosphatase. Determination of the amino sequence by a combination of matrix-assisted laser desorption/ionization mass spectrometry and automated Edman sequencing. Eur J Biochem.; 226: 369-75.
  • Klabunde T, Sträer N, Krebs B, Witzel H. (1995) Structural relationship between the mammalian Fe(III)-Fe(II) and Fe(III)-Zn(II) plant purple acid phosphatases. FEBS Lett.; 367: 56-60.
  • Klabunde T, Sträer N, Fröhlich R, Witzel H, Krebs B. (1996) Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J Mol Biol.; 259: 737-48.
  • Li D, Zhu H, Liu K, Leggewie G, Udvardi M, Wang D. (2002) Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. J Biol Chem.; 277: 27772-81.
  • Liao H, Wong FL, Phang TH, Cheung MY, Li WY, Shao G, Yan X, Lam HM. (2003) GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene.; 318: 103-11.
  • Miller SS, Liu J, Allan DL, Menzhuber CJ, Fedorova M, Vance CP. (2001) Molecular control of acid phosphatase secretion into the rizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol.; 127: 594-106.
  • Mitchell DB, Vogel K, Weimann BJ, val Loon APBM. (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology.; 143: 245-52.
  • Morita N, Nakazato H, Okuyama H, Kim Y, Thomson GA. (1998) Evidence for a glycosylinositolphospholipid - anchored alkaline phosphatase in a aquatic plant Spirodela oligorrhiza. Biochim Biophys Acta.; 1290: 53-62.
  • Mougenest S, Martinez I, Lescure A-M. (1997) Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochem J.; 322: 511-7.
  • Nakazato H, Okamoto T, Nishikoori M, Washio K, Morita N, Haraguchi K, Thomson GA, Okuyama H. (1998) The glycosylphosphatidylinisitol-anchored phosphatase from Spirodela oligorrhiza is a purple acid phosphatase. Plant Physiol.; 118: 1015-20.
  • Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, De Jersey J, Cassady AI, Hamilton SE, Hume DA. (2000) Structure, function and regulation of tartrate-resistant acid phosphatase. Bone.; 27: 575-84.
  • Olczak M, Watorek W. (1998) Oligosaccharide and polypeptide homology of lupin (Lupinus luteus) acid phosphatase subunits. Arch Biochem Biophys.; 360: 85-92.
  • Olczak M, Watorek W. (2000) Structural analysis of N-glycans from yellow lupin (Lupinus luteus) seed diphosphonucleotide phosphatase/phosphodiesterase. Biochim Biophys Acta.; 1523: 236-45.
  • Olczak M, Olczak T. (2002) Diphosphonucleotide phosphatase/phosphodiesterase from yellow lupin (Lupinus luteus) belongs to a novel group of specific metallophosphatases. FEBS Lett.; 519: 159-63.
  • Olczak M, Watorek W. (2002) Processing of N-glycans of two yellow lupin phosphohydrolases during seed maturation and dormancy. Phytochemistry.; 61: 645-55.
  • Olczak M, Watorek W. (2003) Two subfamilies of plant purple acid phosphatases. Physiol Plant.; 118: 491-98.
  • Olczak M, Watorek W, Morawiecka B. (1997) Purification and characterization of acid phosphatase from yellow lupin (Lupinus luteus) seeds. Biochim Biophys Acta.; 1341: 14-25.
  • Olczak M, Kobialka M, Watorek W. (2000) Characterization of diphosphonucleotide phosphatase/phosphodiesterase from yellow lupin (Lupinus luteus) seeds. Biochim Biophys Acta.; 1478: 239-47.
  • Pozo del JC, Allona I, Rubio V, Leyva A, Pena de la A, Aragoncillo C, Paz-Ares J. (1999) A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant J.; 19: 579-89.
  • Robinson DB, Glew RH. (1980) A tartrate-resistant acid phosphatase from Gaucher spleen. Purification and properties. J Biol Chem.; 255: 5864-70.
  • Schenk G, Guddat LW, Ge Y, Carrington LE, Hume DA, Hamilton S, de Jersey J. (2000) Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene.; 250: 117-25.
  • Schenk G, Korsinczky MLJ, Hume DA, Hamilton S, DeJersey J. (2000) Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes. Gene.; 255: 419-24.
  • Schenk G, Boutchard CL, Carrington LE, Noble Cj, Moubaraki B, Murray KS, de Jersey J, Hanson GR, Hamilton S. (2001) A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe-Mn center. J Biol Chem.; 276: 19084-8.
  • Schindelmeiser J, Gullotta F, Munstermann D. (1989) Purple acid phosphatase of human brain macrophages in AIDS encephalopathy. Pathol Res Pract.; 185: 184-6.
  • Schlosnagle DC, Bazer FW, Tsibris JC, Roberts RM. (1974) An iron-containing phosphatase induced by progesterone in the uterine fluids of pigs. J Biol Chem.; 249: 7574-9.
  • Stahl B, Klabunde T, Witzel H, Krebs B, Steup M, Karas M, Hillenkamp F. (1994) The oligosaccharides of the Fe(III)-Zn(II) purple acid phosphatase of the red kidney bean. Determination of the structure by a combination of matrix-assisted laser desorption/ionization mass spectroscopy and selective enzymic degradation. Eur J Biochem.; 220: 321-30.
  • Sträter N, Klabunde T, Tucker P, Witzel H, Krebs B. (1995) Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Science.; 268: 1489-92.
  • Vincent JB, Averill BA. (1990) An enzyme with a double identity: purple acid phosphatase and tartrate-resistant acid phosphatase. FASEB J.; 4: 3009-14.
  • Vogel A, Spener F, Krebs B. (2001) Purple acid phosphatase. In Handbook of metalloproteins. Messerschmidt A, Huber R, Wieghardt K, Poulos T, eds, vol 2, pp 752-66. J. Wiley&Sons, Chichester.
  • Vogel A, Borchers T, Marcus T, Meyer HE, Krebs B, Spener F. (2002) Heterologous expression and characterization of recombinant purple acid phosphatase from red kidney bean. Arch Biochem Biophys.; 401: 164-72.
  • Wasaki J, Ando M, Ozawa K, Omura M, Osaki M, Ito H, Matsui H, Tadano T. (1997) Properties of secretory acid phosphatase from lupin roots under phosphorus-deficient conditions. Soil Sci Plant Nutr.; 43: 981-6.
  • Wasaki J, Omura M, Osaki M, Ito H, Matsui H, Shinano T, Tadano T. (1999) Structure of a cDNA for an acid phosphatase from phosphate-deficient lupin (Lupinus albus L.) roots. Soil Sci Plant Nutr.; 45: 439-49.
  • Yam LT, Li CY, Lam KW. (1971) Tartrate-resistant acid phosphatase isoenzyme in the reticulum cells of leukemic reticuloendotheliosis. N Engl J Med.; 284: 357-60.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.