Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 4 | 1213-1227

Article title

The structure and protein binding of amyloid-specific dye reagents.


Title variants

Languages of publication



The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for β-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of β-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.








Physical description




  • Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • Department of Bioinformatics and Telemedicine, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • Department of Bioinformatics and Telemedicine, Collegium Medicum, Jagiellonian University, Kraków, Poland


  • Attwood TK, Lydon JE, Hall C, Tiddy GJT. (1990) The distinction between chromonic and amphiphilic lyotropic mesophases. Liquid Crystals.; 7: 657-68.
  • Awan T, Forloni G, Ragg E, Iussich S, Rossi G, Colombo L, Girola L, Massignan T, Bugiani O, Salmona M, Tagliavini F. (2001) Therapeutic approaches to prion diseases: In vitro studies with tetracycline compounds. In: Alzheimer's disease: advances in etiology, pathogenesis and therapeutics. Iqbal K, Sisodia SS, Winblad B. eds, pp 809-20. John Wiley & Sons Ltd.
  • Carrotta R, Bauer R, Waninge R, Rischel C. (2001) Conformational characterization of oligomeric intermediates and aggregates in β-lactoglobulin heat aggregation. Protein Sci.; 10: 1312-8.
  • Carter DB, Chou KC. (1998) A model for structure-dependent binding of Congo red to Alzheimer β-amyloid fibrils. Neurobiol Aging.; 19: 37-40.
  • Caughey WS, Raymond LD, Horiuchi M, Caughey B. (1998) Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci U S A.; 95: 12117-22.
  • Chiti F, Webster P, Taddei N, Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A.; 96: 3590-4.
  • Demaimay R, Harper J, Gordon H, Weaver D, Chesebro B, Caughey B. (1998) Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J Neurochem.; 71: 2534-41.
  • Devlin GL, Chow MKM, Howlett GJ, Bottomley SP. (2002) Acid denaturation of α1-antitrypsin: characterization of a novel mechanism of serpin polymerization. J Mol Biol.; 324: 859-70.
  • Gazit E. (2002) A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J.; 16: 77-83.
  • Glenner GG, Eanes ED, Page DL. (1972) The relation of the properties of Congo red-stained amyloid fibrils to the β-conformation. J Histochem Cytochem.; 20: 821-6.
  • Glenner GG, Eanes ED, Bladen HA, Linke RP, Termine JD. (1974) β-pleated sheet fibrils a comparison of native amyloid with synthetic protein fibrils. J Histochem Cytochem.; 22: 1141-58.
  • Howlett DR, Perry AE, Godfrey F, Swatton JE, Jennings KH, Spitzfaden C, Wadsworth H, Wood SJ, Markwell RE. (1999) Inhibition of fibril formation in β-amyloid peptide by a novel series of benzofurans. Biochem J.; 340: 283-9.
  • Howlett DR, George AR, Owen DE, Ward RV, Markwell RE. (1999) Common structural features determine the effectiveness of carvedilol, daunomycin and rolitetracycline as inhibitors of Alzheimer β-amyloid fibril formation. Biochem J.; 343: 419-23.
  • Janek K, Behlke J, Zipper J, Fabian H, Georgalis Y, Beyermann M, Bienert M, Krause E. (1999) Water-soluble β-sheet models which self-assemble into fibrillar structures. Biochemistry.; 38: 8246-52.
  • Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J. (2001) Prediction of amyloid fibril-forming proteins. J Biol Chem.; 276: 12945-50.
  • Kaszuba J, Konieczny L, Piekarska B, Roterman I, Rybarska J. (1993) Bis-azo dyes interference with effector activation of antibodies. J Physiol Pharmacol.; 44: 233-42.
  • Khurana R, Uversky VN, Nielsen L, Fink AL. (2001) Is Congo red an amyloid-specific dye? J Biol Chem.; 276: 22715-21.
  • Kim JS, Wall JS, Meyer J, Murphy C, Randolph TW, Manning MC, Solomon A, Carpenter JF. (2000) Thermodynamic modulation of light chain amyloid fibril formation. J Biol Chem.; 275: 1570-4.
  • Klunk WE, Debnath ML, Pettegrew JW. (1994) Development of small molecule probes for the β-amyloid protein of Alzheimer's disease. Neurobiol Aging.; 15: 691-8.
  • Kuner P, Bohrmann B, Tjernberg LO, Näslund J, Huber G, Celenk S, Grüninger-Leitch F, Richards JG, Jakob-Roetne R, Kemp JA, Nordstedt C. (2000) Controlling polymerization of β-amyloid and prion-derived peptides with synthetic small molecule ligands. J Biol Chem.; 275: 1673-8.
  • Lansbury PT Jr. (1999) Evolution of amyloid: What normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci U S A.; 96: 3342-4.
  • Le Vine III H. (1999) Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol.; 309: 274-84.
  • Li L, Darden TA, Bartolotti L, Kominos D, Pedersen LG. (1999) An atomic model for the pleated β-sheet structure of Aβ amyloid protofilaments. Biophys J.; 76: 2871-8.
  • Lin YM, Raffen R, Zhou Y, Cassidy CS, Flavin MT, Steven FJ. (2001) Amyloid fibril formation in microwell plates for screening of inhibitors. Amyloid.; 8: 182-93.
  • Lyon HO. (2002) Dye purity and dye standardization for biological staining. Biotech Histochem.; 77: 57-80.
  • Maeda N, Chen N, Tirrell M, Israelachvili JN. (2002) Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science.; 297: 379-82.
  • Nakashima K, Fujimoto Y, Kido N. (1995) Fluorescence studies on the adsorption of octadecylrhodamine B onto a latex surface. Photochem Photobiol.; 62: 674-9.
  • Neri A. (1929) Monosulfonic derivatives of 2-N-phenyl-1,2-naphtho-1,2,3-triazole. Gazz Chim Ital.; 59: 384-91.
  • Nielsen L, Khurana R, Coats A. (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry.; 40: 6036-46.
  • Novelli A, Ruiz C. (1928) New substantive dyes derived from 2,7-diaminofluorene. Ann Asocn Quim Argent.; 16: 56-64.
  • Pavlov NA, Cherny DI, Heim G, Jovin TM, Subramaniam V. (2002) Amyloid fibrils from the mammalian protein prothymosin α. FEBS Lett.; 517: 37-40.
  • Piekarska B, Roterman I, Rybarska J, Konieczny L, Kaszuba J. (1994) The melting of native domain structure in effector activation of IgG studied by using Congo red as a specific probe. J Physiol Pharmacol.; 45: 147-62.
  • Piekarska B, Skowronek M, Rybarska J, Stopa B, Roterman I, Konieczny L. (1996) Congo red-stabilized intermediates in the λ light chain transition from native to molten state. Biochimie.; 78: 183-9.
  • Piekarska B, Rybarska J, Stopa B, Zemanek G, KRól, Konieczny L. (1999) Supramolecularity creates nonstandard protein ligands. Acta Biochim Polon.; 46: 841-51.
  • Piekarska B, Konieczny L, Rybarska J, Stopa B, Zemanek G, Szneler E, KRól, Nowak M, Roterman I. (2001) Heat-induced formation of a specific binding site for self-assembled Congo red in the V domain of immunoglobulin L chain λ. Biopolymers.; 59: 446-56.
  • Pollack SJ, Sadler IIJ, Hawtin SR, Tailor VJ, Shearman MS. (1995) Sulfonated dyes attenuate the toxic effects of β-amyloid in a structure-specific fashion. Neurosci Lett.; 197: 211-4.
  • Priola SA, Caughey B, Caughey WS. (1999) Novel therapeutic uses for porphyrins and phthalocyanines in the transmissible spongiform encephalopathies. Curr Opin Microbiol.; 2: 563-6.
  • Raffen R, Dieckman LJ, Szpunar M, Wunschl C, Pokkuluri PR, Dave P, Stevens PW, Cai X, Schiffer M, Stevens FJ. (1999) Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains. Protein Sci.; 8: 509-17.
  • Ramirez-Alvarado M, Merkel JS, Regan L. (2000) A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc Natl Acad Sci USA.; 97: 8979-84.
  • Randolph TW, Seefeldt M, Carpenter JF. (2002) High hydrostatic pressure as a tool to study protein aggregation and amyloidosis. Biochim Biophys Acta.; 1595: 224-34.
  • Reixach N, Crooks E, Ostresh JM, Houghten RA, Blondelle SE. (2000) Inhibition of β-amyloid-induced neurotoxicity by imidazopyridoindoles derived from a synthetic combination library. J Struct Biol.; 130: 247-58.
  • Rollet A, Bacher W. (1940) Azo dyes IV. Monatsh.; 73: 20-4.
  • Rostagno A, Vidal R, Kaplan B, Chuba J, Kumar A, Elliott JI, Frangione B, Gallo G, Ghiso J. (1999) pH-dependent fibrillogenesis of a V [κ] III Bence Jones protein. Br J Haematol.; 107: 835-43.
  • Roterman I, No KT, Piekarska B, Kaszuba J, Pawlicki R, Rybarska J, Konieczny L. (1993) Bis azo dyes - studies on the mechanism of complex formation with IgG modulated by heating or antigen binding. J Physiol Pharmacol.; 44: 213-32.
  • Roterman I, Rybarska J, Konieczny L, Skowronek M, Stopa B, Piekarska B. (1998) Congo red bound to α-1-proteinase inhibitor as a model of supramolecular ligand and protein complex. Comput Chem.; 22: 61-70.
  • Roterman I, KRól, Nowak M, Konieczny L, Rybarska J, Stopa B, Piekarska B, Zemanek G. (2001) Why Congo red binding is specific for amyloid proteins - model studies and a computer analysis approach. Med Sci Monit.; 7: 771-84.
  • Rudyk H, Vasiljevic S, Hennion RM, Birkett CR, Hope J, Gilbert IH. (2000) Screening Congo red and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells. J Gen Virol.; 81: 1155-64.
  • Rybarska J, Piekarska B, Konieczny L, Roterman I. (1988) The formation of soluble heat IgG aggregates for immunological studies. Arch Immunol Ther Exp (Warsz).; 36: 609-22.
  • Rybarska J, Konieczny L, Roterman I, Piekarska B. (1991) The effect of azo dyes on the formation of immune complexes. Arch Immunol Ther Exp (Warsz).; 39: 317-27.
  • Rybarska J, Konieczny L, Piekarska B, Stopa B, Roterman I. (1995) The detection of acute phase serum protein complexes and immune complexes by Congo red binding. J Physiol Pharmacol.; 46: 221-31.
  • Rybarska J, Piekarska B, Stopa B, Zemanek G, Konieczny L, Nowak M, KRól, Roterman I, Szymczakiewicz-Multanowska A. (2001) Evidence that supramolecular Congo red is the sole ligation form of this dye for L chain κ derived amyloid proteins. Folia Histochem Cytobiol.; 39: 307-14.
  • Serpel LC, Sunde M, Blake CCF. (1997) The molecular basis of amyloidosis. Cell Mol Life Sci.; 53: 871-87.
  • Sinha N, Tsai CJ, Nussinov R. (2001) A proposed structural model for amyloid fibril elongation: domain swapping forms an interdigitating β-structure polymer. Protein Eng.; 14: 93-103.
  • Sipe JD. (1992) Amyloidosis. Annu Rev Biochem.; 61: 947-75.
  • Skowronek M, Stopa B, Konieczny L, Rybarska J, Piekarska B, Szneler E, Bakalarski G, Roterman I. (1998) Self-assembly of Congo red - a theoretical and experimental approach to identify its supramolecular organization in water and salt solutions. Biopolymers.; 46: 267-81.
  • Skowronek M, Roterman I, Konieczny L, Stopa B, Rybarska J, Piekarska B. (2000) Why do Congo red, Evans blue and Trypan blue differ in their complexation properties? J Comput Chem.; 21: 656-67.
  • Stopa B, Górny M, Konieczny L, Piekarska B, Rybarska J, Skowronek M, Roterman I. (1998) Supramolecular ligands: Monomer structure and protein ligation capability. Biochimie.; 80: 963-8.
  • Sunde M, Blake C. (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem.; 50: 123-59.
  • Sunde M, Blake CCF. (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q Rev Biophys.; 31: 1-39.
  • Turnell WG, Finch JT. (1992) Binding of the dye Congo red to the amyloid protein pig insulin reveals a novel homology amongst amyloid-forming peptide sequences. J Mol Biol.; 227: 1205-23.
  • Wall J, Schell M, Murphy C, Hrncic C, Stevens FJ, Solomon A. (1999) Thermodynamic instability of human κ6 light chains: Correlation with fibrillogenicity. Biochemistry.; 38: 14101-8.
  • Wasilewskaya AC, Generalova EW, Sonin AC. (1989) Chromonic mesophases. Usp Khim.; 58: 1574-96.
  • West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH. (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A.; 96: 11211-6.
  • Westermark GT, Johnson KH, Westermark P. (1999) Staining methods for identification of amyloid in tissue. Methods Enzymol.; 309: 3-25.
  • Wetzel R. (1997) Domain stability in immunoglobulin light chain deposition disorders. Adv Protein Chem.; 50: 183-242.
  • Zemanek G, Konieczny L, Piekarska B, Rybarska J, Stopa B, Spólnik P, Urbanowicz B, Nowak M, KRól, Roterman I. (2002) Egg yolk platelet proteins from Xenopus laevis are amyloidogenic. Folia Histochem Cytobiol.; 40: 311-8.
  • Zhen W, Han H, Anguiano M, Lemere CA, Cho CG, Lansbury PT Jr. (1999) Synthesis and amyloid binding properties of rhenium complexes: preliminary progress toward a reagent for SPECT imaging of Alzheimer's disease brain. J Med Chem.; 42: 2805-15.
  • Zhuang ZP, Kung MP, Hou C. (2001) Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates. J Med Chem.; 44: 1905-14.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.