Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 4 | 1205-1211
Article title

Paul-Bunnell antigen and a possible mechanism of formation of heterophile antibodies in patients with infectious mononucleosis.

Title variants
Languages of publication
Sera of patients with infectious mononucleosis contain heterophile anti-Paul- Bunnell (PB) antibodies to erythrocytes of numerous mammalian species. Evidence is presented that the corresponding antigen of bovine erythrocytes is not, as previously described, a single molecule, but a series of glycoproteins with glycans terminated with N-glycolylneuraminic acid (Neu5Gc). The latter compound should be an important part of the PB epitope because, in agreement with the results of others, we found that desialylation of the PB antigen abolishes almost completely its activity. We examined three different preparations of GM3 ganglioside for their capacity to bind anti-PB and found that only GM3 from horse erythrocytes containing Neu5Gc exhibited a low although ELISA measurable PB activity. The other two GM3 preparations, from bovine milk and dog erythrocytes, containing N-acetylneuraminic acid (Neu5Ac) bound little if any anti-PB antibodies. This finding confirms a previous report that human erythrocyte Neu5Ac containing sialoglycoprotein with similar O-linked glycans as the PB-antigen of bovine erythrocytes exhibits only very low PB activity (Patarca & Fletcher, 1995, Crit Rev Oncogen., 6: 305). In conclusion, we present a hypothesis that anti-PB antibodies in patients with infectious mononucleosis are formed against infection-induced cell membrane glycoconjugates containing highly immunogenic Neu5Gc.
Physical description
  • Department of Biochemistry, Institute of Hematology and Blood Transfusion, Warszawa, Poland
  • Department of Biochemistry, Institute of Hematology and Blood Transfusion, Warszawa, Poland
  • Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
  • Department of Biochemistry, Institute of Hematology and Blood Transfusion, Warszawa, Poland
  • Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A. (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A.; 95: 11751-56.
  • Chou HH, Hayakawa T, Diaz S, Krings M, Indriaty E, Leakey M, Paabo S, Satta Y, Takahata N, Varki A. (2002) Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc Natl Acad Sci U S A.; 99: 11736-41.
  • Deicher H. (1926) Uber die Erzeugung heterospezifisher Haemagglutinine durch Injection artfremden Serum. Z Hyg.; 106: 561.
  • Dodge JT, Mitchell C, Hanahan DJ. (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys.; 100: 119-30.
  • Duk M, Ugorski M, Lisowska E. (1997) Beta-elimination of O-glycans from glycoproteins transferred to immobilon P membranes: method and someapplications. Anal Biochem.; 253: 98-102.
  • Fletcher MA, Caldwell KE, Latif Z. (1982) Immunochemical studies of infectious mononucleosis. IX. Heterophile antigen asociated with a glycoprotein from the bovine erythrocyte membrane. Vox Sang.; 43: 57-70.
  • Hanganutziu M. (1924) Hémagglutinines Héterogenetiques apres injectior de serum de cheval. CR Soc Biol (Paris).; 91: 1457.
  • Higashi H, Naiki M, Matuo S, Okouchi K. (1977) Antigen of serum sickness type of heterophile antibodies in human sera: identification as gangliosides with N-glycolylneuraminic acid. Biochem Biophys Res Commun.; 79: 388-95.
  • Irie A, Koyama S, Kozutsumi Y, Kawasaki T, Suzuki A. (1998) The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem.; 273: 15866-71.
  • Kano K, Merrick JM, Milgrom F. (1984) Classification of human heterophile antibodies. Int Arch Allergy Appl Immunol.; 73: 373-77.
  • Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature.; 227: 680-5.
  • Lowry OH, Rosebrough NJ, Farr AL., Randall RJ. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem.; 193: 265-75.
  • Malykh YN, Schauer R, Shaw L. (2001) N-Glycolylneuraminic acid in human tumours. Biochimie.; 83: 623-34.
  • Merrick JM, Schifferle R, Zadarlik K, Kano K, Milgrom F. (1977) Isolation and partial characterization of the heterophile antigen of infectious mononucleosis from bovine erythrocytes. J Supramol Struct.; 6: 275-90.
  • Merrick JM, Zadarlik K, Milgrom F. (1978) Characterization of the Hanganutziu-Deicher (serum-sickness) antigen as gangliosides containing N-glycolyl-neuraminic acid. Int Arch Allergy Appl Immunol.; 57: 477-80.
  • Morito T, Kano K, Milgrom F. (1982) Hanganutziu-Deicher antibodies in infectious mononucleosis and other diseases. J Immunol.; 129: 2524-28.
  • Muchmore EA, Milewski M, Varki A, Diaz S. (1989) Biosynthesis of N-glycolylneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem.; 264: 20216-23.
  • Nakarai H, Saida T, Shibata Y, Irie RF, Kano K. (1987) Expression of heterophile, Paul-Bunnell and Hanganutziu-Deicher antigens on human melanoma cell lines. Int Arch Allergy Appl Immunol.; 83: 160-6.
  • Patarca R, Fletcher MA. (1995) Structure and pathophysiology of the erythrocyte membrane-associated Paul-Bunnell heterophile antibody determinant in Epstein-Barr virus-associated disease. Crit Rev Oncog.; 6: 305-26.
  • Shaw L, Schauer R. (1988) The biosynthesis of N-glycolylneuraminic acid occurs by hydroxylation of the CMP-glycoside of N-acetylneuraminic acid. Biol Chem Hoppe Seyler.; 369: 477-86.
  • Shaw L, Schauer R. (1989) Detection of CMP-N-acetylneuraminic acid hydroxylase activity in fractionated mouse liver. Biochem J.; 263: 355-63.
  • Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N, Muchmore E. (2003) Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci U S A.; 100: 12045-50.
  • Towbin H, Staehelin T, Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A.; 76: 4350-4.
  • Trafny EA, Grzybowski J. (1988) Characterization of the specificity of lipopolysaccharide antigens from seven fisher's immunotypes of Pseudomonas aeruginosa, using ELISA technique. Acta Microbiol Pol.; 37: 191-204.
  • Undefriend S, Stein S, Böhlen P, Dairman W, Leimbgruber W, Weigele M. (1972) Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science.; 178: 871-2.
  • Varki A. (2001) N-Glycolylneuraminic acid deficiency in humans. Biochimie.; 83: 615-22
  • Yu RK, Ledeen RW. (1972) Gangliosides of human, bovine, and rabbit plasma. J Lipid Res.; 13: 680-6.
  • Watanabe K, Hakomori S, Powell ME, Yokota M. (1980) The amphipathic membrane proteins associated with gangliosides: the Paul-Bunnell antigen is one of the gangliophilic proteins. Biochem Biophys Res Commun.; 92: 638-46.
  • Zdebska E, Kościelak J. (1999) A single-sample method for determination of carbohydrate and protein contents glycoprotein bands separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analyt Biochem.; 275: 171-9.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.