PL EN


Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 4 | 1097-1110
Article title

Isozymes delta of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Phospholipase C (PLC, EC 3.1.4.11) is an enzyme crucial for the phosphoinositol pathway and whose activity is involved in eukaryotic signal transduction as it generates two second messengers: diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). There are four major types of phospholipase C named: β, γ, δ and the recently discovered ε, but this review will focus only on the recent advances for the γ isozymes of PLC. So far, four d isozymes (named γ1-4) have been discovered and examined. They differ with regard to cellular distribution, activities, biochemical features and involvement in human ailments.
Year
Volume
50
Issue
4
Pages
1097-1110
Physical description
Dates
published
2003
received
2003-08-20
revised
2003-11-13
accepted
2003-12-08
References
  • Allen V, Swigart P, Cheung R, Cockcroft S, Katan M. (1997) Regulation of inositol lipid-specific phospholipase Cδ by changes in Ca2+ ion concentrations. Biochem J.; 327: 545-52.
  • Asemu G, Tappia PS, Dhalla NS. (2003) Identification of the changes in phospholipase C isozymes in ischemic-reperfused rat heart. Arch Biochem Biophys.; 411: 174-82.
  • Baek KJ, Kang SK, Damron DS, Im MJ. (2001) Phospholipase Cδ1 is a guanine nucleotide exchanging factor for transglutaminase II (Gαh) and promotes α1B-adrenoreceptor-mediated GTP binding and intracellular calcium release. J Biol Chem.; 276: 5591-7.
  • Banno Y, Okano Y, Nozawa Y. (1994) Thrombin-mediated phosphoinositide hydrolysis in Chinese hamster ovary cells overexpressing phospholipase C-δ1. J Biol Chem.; 269: 15846-52.
  • Berridge MJ. (1993) Inositol trisphosphate and calcium signalling. Nature.; 361: 315-25.
  • Bristol A, Hall SM, Kriz RW, Stahl ML, Fan YS, Byers MG, Eddy RL, Shows TB, Knopf JL. (1998) Phospholipase C-148: Chromosomal location and deletion mapping of functional domains. Cold Spring Harbor Symp Quant Biol.; 53: 915-20.
  • Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC. (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell.; 75: 1137-44.
  • Cheng HF, Jiang MJ, Chen CL, Liy SM, Womg LP, Lomasney JW, King K. (1995) Cloning and identification of amino acid residues of human phospholipase C δ1 essential for catalysis. J Biol Chem.; 270: 5495-505.
  • Cifuentes ME, Honkanen L, Rebecchi MJ. (1993) Proteolytic fragments of phosphoinositide-specific phospholipase C-δ1. Catalytic and membrane binding properties. J Biol Chem.; 268: 11586-93.
  • Cocco L, Capitani S, Maraldi NM, Mazzotti G, Barnabei O, Rizzoli R, Gilmour RS, Wirtz KWA, Rhee SG, Manzoli FA. (1998) Inositides in the nucleus: taking stock of PLC β1. Adv Enzyme Regul.; 38: 351-63.
  • Cockroft S, Thomas GMH. (1992) Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J.; 288: 1-14.
  • De Smedt H, Parys JB. (1995) Molecular and functional diversity of inositol triphosphate-induced Ca(2+) release. Verh K Acad Geneeskd Belg.; 57: 423-58.
  • Divecha N, Rhee SG, Letcher AJ, Irvine RF. (1993) Phosphoinositide signalling enzymes in rat liver nuclei: Phosphoinositidase C isoform β1 is specifically, but not predominantly, located in the nucleus. Biochem J.; 289: 617-20.
  • Drayer AL, Van der Kay J, Mayr GW, Van Haaster PJ. (1994) Role of phospholipase C in Dictyostelium: Formation of inositol 1,4,5-triphosphate and normal development in cells lacking phospholipase C activity. EMBO J.; 13: 1601-09.
  • Essen LO, Peristic O, Cheung R, Katan M, Williams RL. (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase C-δ. Nature.; 380: 595-602.
  • Essen LO, Peristic O, Lynch DE, Katan M, Williams RL. (1997) A ternary metal-binding site in the C2 domain of phosphoinositide-specific phospholipase C-δ1. Biochemistry.; 36: 2753-62.
  • Faenza I, Matteucci A, Manzoli L, Billi AM, Aluigi M, Peruzzi D, Vitale M, Castorina S, Suh PG, Cocco L. (2000) A role for nuclear phospholipase C β1 in cell cycle control. J Biol Chem.; 275: 30520-4.
  • Feng JF, Rhee SG, Im MJ. (1996) Evidence that phospholipase δ1 is the effector in the Gh (transglutaminase II)-mediated signalling. J Biol Chem.; 271: 16451-4.
  • Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB. (1995) Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell.; 83: 1037-46.
  • Flick JS, Thorner J. (1998) An essential function of a phosphoinositide-specific phospholipase C is relieved by inhibition of a cyclin-dependent protein kinase in the yeast Saccharomyces cerevisiae. Genetics.; 148: 33-47.
  • Flick JS, Thorner, J. (1993) Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol.; 13: 5861-76.
  • Fukami K, Nakao K, Inoue T, Kataoka Y, Kurokawa M, Fissore RA, Nakamura K, Katsuki M, Mikoshiba K, Yoshida N, Takenawa T. (2001) Requirement of phospholipase Cδ4 for the zona pellucida-induced acrosome reaction. Science.; 292: 920-3.
  • Fukami K, Takenaka K, Nagano K, Takenawa T. (2000) Growth factor-induced promoter activation of murine phospholipase C δ4 gene. Eur J Biochem.; 267: 28-36.
  • Fukami K, Yoshida M, Inoue T, Kurokawa M, Fissore RA, Yoshida N, Mikoshiba K, Takenawa T. (2003) Phospholipase C δ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol.; 161: 79-88.
  • Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, Petrova V, McLaughlin S, Rebecchi MJ. (1995) The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphoinositol 4,5-bisphosphate in bilayer membranes. Biochemistry.; 34: 16228-34.
  • Gasa R, Trinh KY, Yu K, Wilkie TM, Newgard CB. (1999) Overexpression of G11αand isoforms of phospholipase C in islet β-cells reveals a lack of correlation between inositol phosphate accumulation and insulin secretion. Diabetes.; 48: 1035-44.
  • Ghosh S, Pawelczyk T, Lowenstein JM. (1997) Phospholipase C isoforms δ1 and δ3 from human fibroblast. High-yield expression in Escherichia coli, simple purification, and properties. Protein Expr Purif.; 9: 262-78.
  • Grobler JA, Hurley JH. (1998) Catalysis by phospholipase Cδ1 requires that Ca2+ bind to the catalytic domain but not the C2 domain. Biochemistry.; 37: 5020-8.
  • Haber MT, Fukui T, Lebowitz MS, Lowenstein JM. (1991) Activation of phosphoinositide-specific phospholipase C δ from rat liver by polyamines and basic proteins. Arch Biochem Biophys.; 288: 243-9.
  • Harlan JE, Hajduk PJ, Yoon HS, Fesik SW. (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature.; 371: 168-70.
  • Henry RA, Boyce SY, Kurz T, Wolf RA. (1995) Stimulation and binding of myocardial phospholipase C by phosphatidic acid. Am J Physiol.; 269: C349-58.
  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K. (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A.; 92: 3903-7.
  • Hodson EAM, Ashley CC, Hughes AD, Lymn JS. (1998) Regulation of phospholipase C-delta; by GTP-binding proteins-rhoA as an inhibitory modulator. Biochim Biophys Acta.; 1403: 97-101.
  • Homma Y, Emori Y. (1995) A dual functional signal mediator showing RhoGAP and phospholipase C-δ stimulating activities. EMBO J.; 14: 286-91.
  • Janmey PA. (1994) Phosphoinositide and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol.; 56: 169-91.
  • Kelley GG, Reks SE, Ondrako JM, Smrcka AU. (2001) Phospholipase ε: a novel Ras effector. EMBO J.; 20: 743-54.
  • Kim H, Kim JY, Kim KA, Lim Y, Kim YH, Huh PW, Lee KH, Han H, Wang YP, Rha HK. (2002) Identification of the elements regulating the expression of the phospholipase C δ1. Mol Cells.; 14: 29-34.
  • Kim YH, Park TJ, Lee YH, Baek KJ, Suh PG, Ryu SH, Kim KT. (1999) Phospholipase C-δ1 is activated by capacitative calcium entry that follows phospholipase C-β activation upon bradykinin stimulation. J Biol Chem.; 274: 26127-34.
  • Kosugi T, Osanai T, Kamada T, Nakano T, Okumara K. (2003) Phospholipase C activity in skin fibroblasts obtained from patients with essential hypertension. J Hypertens.; 21: 583-90.
  • Kriz R, Lin LL, Sultzman L, Ellis C, Heldin CH, Pawson T, Knopf J. (1990) Phospholipase C isozymes: Structural and functional similarities: in Proto-oncogenes in cell development: Ciba Found Symp.; 150: 112-27.
  • LaBelle EF, Wilson K, Polyak E. (2002) Subcellular localization of phospholipase C isoforms in vascular smooth muscle. Biochim Biophys Acta.; 1583: 273-8.
  • Lee KH, Lim Y, Hwang SC, Shin SW, Bae YS, Noh DY, Lee SB, Rhee SG. (1994) Identification of PLC isozymes in hematopoietc cells and lymphoid tissues. FASEB J.; 8: 1046.
  • Lee SB, Rhee SG. (1996) Molecular cloning, splice variants, expression and purification of phospholipase C-δ4. J Biol Chem.; 271: 25-31.
  • Lee SB, Rhee SG. (1995) Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol.; 7: 183-89.
  • Lemmon MA, Ferguson KM. (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J.; 350: 1-8.
  • Lin FG, Cheng HF, Lee IF, Kao HJ, Loh SH, Lee WH. (2001) Downregulation of phospholipase C δ3 by cAMP and calcium. Biochem Biophys Res Commun.; 286: 274-80.
  • Liu N, Fukami K, Yu H, Takenawa T. (1996) A new phospholipase C delta 4 is induced at S-phase of the cell cycle and appears in the nucleus. J Biol Chem.; 271: 355-60.
  • Lomasney JW, Cheng HF, Rofflers SR, King K. (1999) Activation of phospholipase Cδ1 through C2 domain by a Ca2+-enzyme-phosphatidylserine ternary complex. J Biol Chem.; 274: 21995-2001.
  • Lomasney JW, Cheng HF, Wang LP, Kuan YS, Liu SM, Fesik SW, King K. (1996) Phosphatidylinositol 4,5-bisphosphate binding to the pleckstrin homology domain of phospholipase C-δ1 enhances enzyme activity. J Biol Chem.; 271: 25316-26.
  • Lymn JS, Hughes AD. (2000) Phospholipase C isoforms, cytoskeletal organization and vascular smooth muscle differentation. News Physiol Sci.; 15: 41-5.
  • Marchisio M, Di Baldassarre A, Angelucci D, Caramelli E, Cataldi A, Castorina S, Antonucci A, Di Giovannantonio L, Schiavone C, Di Biagio R, Falconi M, Zauli G, Miscia S. (2001) Phospholipase C δ2 expression characterizes the neoplastic transformation of the human gastric mucosa. Am J Pathol.; 159: 803-8.
  • Martelli AM, Lach S, Grill V, Gilmour RS, Cocco L, Narducci P, Bareggi R. (1996) Expression and immunohistochemical localization of eight phospholipase C isoforms in adult male mouse cerebellar cortex. Acta Histochem.; 98: 131-41.
  • Matecki A, Pawelczyk T. (1997) Regulation of phospholipase C δ1 by sphingosine. Biochim Biophys Acta.; 1325: 287-96.
  • Matecki A, Stopa M, Was A, Pawelczyk T. (1997) Effect of sphingomyelin and its metabolites on the activity of human recombinant PLC δ1. Int J Biochem Cell Biol.; 29: 815-28.
  • Mazzoni M, Bertagnolo V, Neri LM, Carini C, Marchisio M, Molani D, Manzoli FA, Capitani S. (1992) Discrete subcellular localization of phosphoinositidase C β, γ and δ in PC12 rat pheochromocytoma cells. Biochem Biophys Res Commun.; 187: 114-20.
  • Meldrum E, Katan M, Parker P. (1989) A novel inositol-phospholipid-specific phospholipase C. Rapid purification and characterization. Eur J Biochem.; 182: 673-7.
  • Meldrum E, Kriz RW, Totty N, Parker PJ. (1991) A second gene product of the inositol-phospholipid-specific phospholipase C δ subclass. Eur J Biochem.; 196: 159-65.
  • Milting H, Heilmeyer LMG, Thielaczek R. (1996) Cloning of phospholipase C-δ1 of rabbit skeletal muscle. J Muscle Res Cell Motil.; 17: 79-84.
  • Murthy SNP, Lomasney JW, Mak EC, Lorand L. (1999) Interaction of Gh/transglutaminase with phospholipase Cδ1 and with GTP. Proc Natl Acad Sci.; 96: 11815-19.
  • Nagano K, Fukami K, Minagawa T, Wantanabe Y, Ozaki C, Takenawa T. (1999) A novel phospholipase C delta-4 splice variant as a negative regulator of PLC. J Biol Chem.; 274: 2872-9.
  • Nagasawa K, Tanino H, Shimphama S, Fujimoto S. (2003) Effects of hyperoxia and acrylonitrile on the phospholipase C isozyme protein levels in rat heart and brain. Life Sci.; 73: 1453-62.
  • Nakamura Y, Fukami K, Yu H, Takenawa K, Kataoka Y, Shirakata Y, Nishikawa SI, Hashimoto K, Yoshida N, Takenawa T, (2003) Phospholipase Cδ1 is required for skin stem cell lineage commitment. EMBO J.; 22: 2981-91.
  • Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K. (2002) Enhanced activity of variant phospholipase C-δ1 protein (R257H) detected in patients with coronary artery spasm. Circulation.; 105: 2024-9.
  • Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM. (1994) Gh: A GTP-binding protein with transglutaminase activity and receptor signaling function. Science.; 264: 1593-6.
  • Nishizuka Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J.; 9: 484-96.
  • Noh DY, Bae YS, Lee KH, Hwang SC, Rhee SG. (1994) Distribution of phospholipase isozymes in rat skeletal, smooth and cardiac muscle. FASEB J.; 8: 1043.
  • Park ES, Won JH, Han KJ, Suh PG, Ryu SH, Lee HS, Yun HY, Kwon NS, Baek KJ. (1998) Phospholipase C-δ1 and oxytocin receptor signalling: evidence of its role as an effector. Biochem J.; 331: 283-9.
  • Paterson HF, Savopoulos JW, Perisic O, Cheung R, Ellis MV, Williams RL, Katan M. (1995) Phospholipase C δ1 requires a pleckstrin homology domain to interaction with the plasma membrane. Biochem J.; 312: 661-6.
  • Pawelczyk T, Lowenstein JM. (1992) Regulation of phospholipase C δ activity by sphingomyelin and sphingosine. Arch Biochem Biophys.; 297: 328-33.
  • Pawelczyk T, Lowenstein JM. (1993a) Binding of phospholipase C δ1 to phospholipid vesicles. Biochem J.; 291: 693-6.
  • Pawelczyk T, Lowenstein JM. (1993b) Inhibition of phospholipase Cδ by hexadecylphosphorylcholine and lysophospholipids with antitumor activity. Biochem Pharmacol.; 45: 493-7.
  • Pawelczyk T, Lowenstein JM. (1997a) The effect of different molecular species of sphingomyelin on phospholipase C δ1 activity. Biochimie.; 79: 741-8.
  • Pawelczyk T, Matecki A. (1997b) Expression, purification and kinetic properties of human recombinant phospholipase C δ3. Acta Biochim Polon.; 44: 221-30.
  • Pawelczyk T, Matecki A. (1997c) Structural requirements of phospholipase C δ1 for regulation by spermine, sphingosine and sphingomyelin. Eur J Biochem.; 248: 459-65.
  • Pawelczyk T, Matecki A. (1998) Localization of phospholipase C δ3 in the cell and regulation of its activity by phospholipids and calcium. Eur J Biochem.; 257: 169-77.
  • Pawelczyk T, Matecki A. (1999) Phospholipase C-δ3 binds with high specificity to phosphatidylinositol 4,5-biphosphate and phosphatidic acid in bilayer membranes. Eur J Biochem.; 262: 291-8.
  • Rameh LE, Cantley LC. (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem.; 274: 8347-50.
  • Rebecchi M, Paterson A, McLaughlin S. (1992) Phosphoinositide-specific phospholipase C-δ1 binds with high affinity to phospholipid vehicles containing phosphoinositol 4,5-biphosphate. Biochemistry.; 31: 12742-7.
  • Rhee SG, Bae YS. (1997) Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem.; 272: 15045-8.
  • Shimohama S, Perry G, Takenawa T, Whitehouse PJ, Miyoshi K, Suenaga T, Matsumoto S, Nishimura M, Kimura J. (1993) Abnormal accumulation of phospholipase C-delta in filamentous inclusions of human neurodegenerative diseases. Neurosci Lett.; 162: 183-6.
  • Shimohama S, Sasaki Y, Fujimoto S, Kamiya S, Taniguchi T, Kimura J. (1998) Phospholipase C isozymes in the human brain and their changes in Alzheimer's disease. Neuroscience.; 82: 999-1007.
  • Shin SH, Lee KH, Hwang SC, Lee SB, Rhee SG. (1994) The differential expression of the phospholipase C isozymes in the rat digestive organs. FASEB J.; 8: 1044.
  • Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG. (1988) Cloning and sequence of multiple forms of phospholipase C. Cell.; 54: 161-9.
  • Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR. (1995) Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold. Cell.; 80: 929-38.
  • Tachibana T, Noguchi K, Ruda MA. (2002) Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci Lett.; 327: 133-7.
  • Vitale M, Mateucci A, Manzoli L, Rodella L, Mariani AR, Zauli G, Falconi M, Billi AM, Martelli AM, Gilmour RS, Cocco L. (2001) Interleukin-2 activates nuclear phospholipase C β by mitogen-activated protein kinase-dependent phosphorylation in human natural killer cells. FASEB J.; 15: 1789-91.
  • Xu A, Suh PG, Marmy-Conus N, Pearson RB, Seok OY, Cocco L, Gilmour RS. (2001) Phosphorylation of nuclear phospholipase C β1 by extracellular signal-regulated kinase mediates the mitogenic action of insulin-like growth factor 1. Mol Cell Biol.; 21: 2981-90.
  • Yagisawa H, Hirata M, Kanematsu T, Watanabe Y, Ozaki S, Sakuma K, Tanaka H, Yabuta N, Kamata H, Hirata H, Nojima H. (1994) Expression and characterization of an inositol 1,4,5-triphosphate binding domain of a phosphatidylinositol-specific phospholipase C-δ1. J Biol Chem.; 269: 20179-88.
  • Yamaga M, Fujii M, Kamata H, Hirata H, Yagisawa H. (1999) Phospholipase C-δ1 contains a functional nuclear export signal sequence. J Biol Chem.; 274: 28537-41.
  • York JD, Odom AR, Murphy R, Ives EB, Wente SR. (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science.; 285: 96-100.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv50i4p1097kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.