Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 3 | 715-724
Article title

Defense against own arms: staphylococcal cysteine proteases and their inhibitors.

Title variants
Languages of publication
Staphylococcus aureus is a human pathogen causing a wide range of diseases. Most staphylococcal infections, unlike those caused by other bacteria are not toxigenic and very little is known about their pathogenesis. It has been proposed that a core of secreted proteins common to many infectious strains is responsible for colonization and infection. Among those proteins several proteases are present and over the years many different functions in the infection process have been attributed to them. However, little direct, in vivo data has been presented. Two cysteine proteases, staphopain A (ScpA) and staphopain B (SspB) are important members of this group of enzymes. Recently, two cysteine protease inhibitors, staphostatin A and staphostatin B (ScpB and SspC, respectively) were described in S. aureus shedding new light on the complexity of the processes involving the two proteases. The scope of this review is to summarize current knowledge on the network of staphylococcal cysteine proteases and their inhibitors in view of their possible role as virulence factors.
Physical description
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
  • Abdelnour A, Arvidson S, Bremell T, Rydén C, Tarkowski A. (1993) The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun.; 61: 3879-85.
  • Arvidson S. (1973) Studies on extracellular proteolytic enzymes from Staphylococcus aureus. II. Isolation and characterization of an EDTA-sensitive protease. Biochim Biophys Acta.; 302: 149-57.
  • Arvidson S. (2000) Extracellular enzymes. In Gram-positive pathogens. Fischetti VA, Novick RP, Ferretti JJ, Potrnoy DA, Rood JI. eds, pp 379-85. American Society for Microbiology, Washington, D.C.
  • Arvidson S, Holme T, Lindholm B. (1973) Studies on extracellular proteolytic enzymes from Staphylococcus aureus. I. Purification and characterization of one neutral and one alkaline protease. Biochim Biophys Acta.; 302: 135-48.
  • Barrett AJ, Rawlings ND, Woessner JF, eds. (1998) Handbook of proteolytic enzymes. Academic Press, San Diego.
  • Björklind A, Jörnvall H. (1974) Substrate specificity of three different extracellular proteolytic enzymes from Staphylococcus aureus. Biochim Biophys Acta.; 370: 524-9.
  • Carmona C, Gray GL. (1987) Nucleotide sequence of the serine protease gene of Staphylococcus aureus, strain V8. Nucleic Acids Res.; 15: 6757.
  • Coulter SN, Schwan WR, Ng EY, Langhorne MH, Ritchie HD, Westbrock-Wadman S, Hufnagle WO, Folger KR, Bayer AS, Stover CK. (1998) Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol.; 30: 393-404.
  • Drapeau GR. (1978) Role of a metalloprotease in activation of the precursor of staphylococcal protease. J Bacteriol.; 136: 607-13.
  • Drapeau GR, Boily Y, Houmard J. (1972) Purification and properties of an extracellular protease of Staphylococcus aureus. J Biol Chem.; 247: 6720-6.
  • Dubin G. (2002) Extracellular proteases of Staphylococcus spp. Biol Chem.; 383: 1075-86.
  • Dubin G, Krajewski M, Popowicz G, Stec J, Bochtler M, Potempa J, Dubin A, Holak TA. (2003a) A novel class of cysteine protease inhibitors: solution structure of staphostatin A from Staphylococcus aureus. Biochemistry.; in press.
  • Dubin G, Popowicz G, Krajewski M, Potempa J, Dubin A, Holak TA. (2003b) 1H, 15N and 13C NMR resonance assignments of staphostatin A, a specific Staphylococcus aureus cysteine proteinase inhibitor. J Biomol NMR.; in press
  • Filipek R, Rzychon M, Oleksy A, Gruca M, Dubin A, Potempa J, Bochtler M. (2003) The staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease. J Biol Chem.; in press. published on
  • Hofmann B, Schomburg D, Hecht HJ. (1993) Crystal structure of a thiol proteinase from Staphylococcus aureus V8 in the E-64 inhibitor complex. Acta Crystallogr.; 49 (Suppl.): 102.
  • Houmard J, Drapeau GR. (1972) Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A.; 69: 3506-9.
  • Lowy FD. (1998) Staphylococcus aureus infections. N Engl J Med.; 339: 520-32.
  • Maeda H, Yamamoto T. (1996) Pathogenic mechanisms induced by microbial proteases in microbial infections. Biol Chem Hoppe-Seyler.; 377: 217-26.
  • Massimi I, Park E, Rice K, Müller-Esterl W, Saudder D, McGavin MJ. (2002) Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem.; 277: 41770-7.
  • McAleese FM, Walsh EJ, Sieprawska M, Potempa J, Foster TJ. (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem.; 276: 29969-78.
  • McGavin MJ, Zahradka C, Rice K, Scott JE. (1997) Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun.; 65: 2621-8.
  • Molla A, Yamamoto T, Akaike T, Miyoshi S, Maeda H. (1989) Activation of Hageman factor and prekallikrein and generation of kinin by various microbial proteinases. J Biol Chem.; 264: 10589-94.
  • Novick RP. (2000) Pathogenicity factors and their regulation. In Gram-positive pathogens. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI. eds, pp 392-407. American Society for Microbiology, Washington, D.C.
  • Potempa J, Watorek W, Travis J. (1986) The inactivation of human plasma α1-proteinase inhibitor by proteinases from Staphylococcus aureus. J Biol Chem.; 261: 14330-4.J Biol Chem.; 261: 14330-4.
  • Potempa J, Dubin A, Korzus G, Travis J. (1988) Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J Biol Chem.; 263: 2664-7.
  • Qasim MA. (1998) Glutamyl endopeptidase I. In Handbook of proteolytic enzymes. Barrett AJ, Rawlings ND, Woessner JF. eds, pp 243-6. Academic Press, San Diego.
  • Reed SB, Wesson CA, Liou LE, Trumble WR, Schlievert PM, Bohach GA, Bayles KW. (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect Immun.; 69: 1521-7.
  • Rice K, Peralta R, Bast D, Azavedo J, McGavin MJ. (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun.; 69: 159-69.
  • Rzychon M, Sabat A, Kosowska K, Potampa J, Dubin A. (2003a) Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains, Staphylococcus spp. cysteine proteinases. Mol Microbiol.; 49: 1051-66.
  • Rzychon M, Filipek R, Sabat A, Kosowska K, Dubin A, Potempa J, Bochtler M. (2003b) Staphostatins resemble lipocalins, not cystatins in fold. Protein Sci.; 12: 2252-56
  • Takahashi M, Tezuka T, Katunuma N. (1994) Inhibition of growth and cysteine proteinase activity of Staphylococcus aureus V8 by phosphorylated cystatin in skin cornified envelope. FEBS Lett.; 355: 275-8.
  • Takahashi M, Tezuka T, Korant B, Katunuma N. (1999) Inhibition of cysteine protease and growth of Staphylococcus aureus V8 and poliovirus by phosphorylated cystatin conjugate of skin. BioFactors.; 10: 339-45.
  • Travis J, Potempa J, Maeda H. (1995) Are bacterial proteinases pathogenic factors? Trends Microbiol.; 3: 405-7.
  • Ziebandt AK, Weber H, Rudolph J, Schmid R, Hoper D, Engelmann S, Hecker M. (2001) Extracellular proteins of Staphylcoccus aureus and the role of SarA and sigma B. Proteomics.; 1: 480-93.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.