PL EN


Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 3 | 691-713
Article title

Structure-function relationships in class CA1 cysteine peptidase propeptides

Content
Title variants
Languages of publication
EN
Abstracts
EN
Regulation of proteolytic enzyme activity is an essential requirement for cells and tissues because proteolysis at a wrong time and location may be lethal. Proteases are synthesized as inactive or less active precursor molecules in order to prevent such inappropriate proteolysis. They are activated by limited intra- or intermolecular proteolysis cleaving off an inhibitory peptide. These regulatory proenzyme regions have attracted much attention during the last decade, since it became obvious that they harbour much more information than just triggering activation. In this review we summarize the structural background of three functions of clan CA1 cysteine peptidase (papain family) proparts, namely the selectivity of their inhibitory potency, the participation in correct intracellular targeting and assistance in folding of the mature enzyme. Today, we know more than 500 cysteine peptidases of this family from the plant and animal kingdoms, e.g. papain and the lysosomal cathepsins L and B. As it will be shown, the propeptide functions are determined by certain structural motifs conserved over millions of years of evolution.
Year
Volume
50
Issue
3
Pages
691-713
Physical description
Dates
published
2003
received
2003-05-30
revised
2003-07-18
accepted
2003-08-29
References
  • Baker D, Silen JL, Agard DA. (1992) Protease pro region required for folding is a potent inhibitor of the mature enzyme. Proteins.; 12: 339-44.
  • Baker KC, Taylor MA, Cummings NJ, Tunon MA, Worboys KA, Connerton IF. (1996) Autocatalytic processing of pro-papaya proteinase IV is prevented by crowding of the active-site cleft. Protein Eng.; 9: 525-9.
  • Baranski TJ, Faust PL, Kornfeld S. (1990) Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen. Cell.; 63: 281-91.
  • Billington CJ, Mason P, Magny MC, Mort JS. (2000) The slow-binding inhibition of cathepsin K by its propeptide. Biochem Biophys Res Commun.; 276: 924-9.
  • Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen M, Levy MA. (1996) Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem.; 271: 12517-24.
  • Bromme D, Bonneau PR, Lachance P, Wiederanders B, Kirschke H, Peters C, Thomas DY, Storer AC, Vernet T. (1993) Functional expression of human cathepsin S in Saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme. J Biol Chem.; 268: 4832-8.
  • Brown J, Matutes E, Singleton A, Price C, Molgaard H, Buttle D, Enver T. (1998) Lymphopain, a cytotoxic T and natural killer cell-associated cysteine proteinase. Leukemia.; 12: 1771-81.
  • Cappetta M, Roth I, Diaz A, Tort J, Roche L. (2002) Role of the prosegment of Fasciola hepatica cathepsin L1 in folding of the catalytic domain. Biol Chem.; 383: 1215-21.
  • Cardelli JA, Golumbeski GS, Dimond RL. (1986) Lysosomal enzymes in Dictyostelium discoideum are transported to lysosomes at distinctly different rates. J Cell Biol.; 102: 1264-70.
  • Carmona E, Dufour E, Plouffe C, Takebe S, Mason P, Mort JS, Menard R. (1996) Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry.; 35: 8149-57.
  • Chen Y, Plouffe C, Menard R, Storer AC. (1996) Delineating functionally important regions and residues in the cathepsin B propeptide for inhibitory activity. FEBS Lett.; 393: 24-6.
  • Chowdhury SF, Sivaraman J, Wang J, Devanathan G, Lachance P, Qi H, Menard R, Lefebvre J, Konishi Y, Cygler M, Sulea T, Purisima EO. (2002) Design of noncovalent inhibitors of human cathepsin L. From the 96-residue proregion to optimized tripeptides. J Med Chem.; 45: 5321-9.
  • Cigic B, Krizaj I, Kralj B, Turk V, Pain RH. (1998) Stoichiometry and heterogeneity of the pro-region chain in tetrameric human cathepsin C. Biochim Biophys Acta.; 1382: 143-50.
  • Cigic B, Dahl SW, Pain RH. (2000) The residual pro-part of cathepsin C fulfills the criteria required for an intramolecular chaperone in folding and stabilizing the human proenzyme. Biochemistry.; 39: 12382-90.
  • Claveau D, Riendeau D. (2001) Mutations of the C-terminal end of cathepsin K affect proenzyme secretion and intracellular maturation. Biochem Biophys Res Commun.; 281: 551-7.
  • Coulombe R, Grochulski P, Sivaraman J, Menard R, Mort JS, Cygler M. (1996) Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J.; 15: 5492-503.
  • Cunningham EL, Jaswal SS, Sohl JL, Agard DA. (1999) Kinetic stability as a mechanism for protease longevity. Proc Natl Acad Sci U S A.; 96: 11008-14.
  • Cuozzo JW, Tao K, Wu QL, Young W, Sahagian GG. (1995) Lysine-based structure in the proregion of procathepsin L is the recognition site for mannose phosphorylation. J Biol Chem.; 270: 15611-9.
  • Cuozzo JW, Tao K, Cygler M, Mort JS, Sahagian GG. (1998) Lysine-based structure responsible for selective mannose phosphorylation of cathepsin D and cathepsin L defines a common structural motif for lysosomal enzyme targeting. J Biol Chem.; 273: 21067-76.
  • Cygler M, Sivaraman J, Grochulski P, Coulombe R, Storer AC, Mort JS. (1996) Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure.; 4: 405-16.
  • Daggett V, Fersht AR. (2003) Is there a unifying mechanism for protein folding? Trends Biochem Sci.; 28: 18-25.
  • Dahl SW, Halkier T, Lauritzen C, Dolenc I, Pedersen J, Turk V, Turk B. (2001) Human recombinant pro-dipeptidyl peptidase I. (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry.; 40: 1671-8.
  • Dalet-Fumeron V, Boudjennah L, Pagano M. (1996) Competition between plasminogen and procathepsin B as a probe to demonstrate the in vitro activation of procathepsin B by the tissue plasminogen activator. Arch Biochem Biophys.; 335: 351-7.
  • Delaria K, Fiorentino L, Wallace L, Tamburini P, Brownell E, Muller D. (1994) Inhibition of cathepsin L-like cysteine proteases by cytotoxic T-lymphocyte antigen-2 beta. J Biol Chem.; 269: 25172-7.
  • Denizot F, Brunet JF, Roustan P, Harper K, Suzan M, Luciani MF, Mattei MG, Golstein P. (1989) Novel structures CTLA-2 alpha and CTLA-2 beta expressed in mouse activated T cells and mast cells and homologous to cysteine proteinase proregions. Eur J Immunol.; 19: 631-5.
  • Dodds RA, James IE, Rieman D, Ahern R, Hwang SM, Connor JR, Thompson SD, Veber DF, Drake FH, Holmes S, Lark MW, Gowen M. (2001) Human osteoclast cathepsin K is processed intracellularly prior to attachment and bone resorption. J Bone Miner Res.; 16: 478-86.
  • Drenth J, Jansoniu Jn, Koekoek R, Swen HM, Wolthers BG. (1968) Structure of papain. Nature.; 218: 929-31.
  • Fox T, Demiguel E, Mort JS, Storer AC. (1992) Potent slow-binding inhibition of cathepsin-B by its propeptide. Biochemistry.; 31: 12571-6.
  • Frydman J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem.; 70: 603-47.
  • Furmonaviciene R, Sewell HF, Shakib F. (2000) Comparative molecular modelling identifies a common putative IgE epitope on cysteine protease allergens of diverse sources. Clin Exp Allergy.; 30: 1307-13.
  • Gabel CA, Goldberg DE, Kornfeld S. (1983) Identification and characterization of cells deficient in the mannose 6-phosphate receptor: evidence for an alternate pathway for lysosomal enzyme targeting. Proc Natl Acad Sci U S A.; 80: 775-9.
  • Glickman JN, Kornfeld S. (1993) Mannose 6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphoblasts. J Cell Biol.; 123: 99-108.
  • Gotthardt D, Warnatz HJ, Henschel O, Bruckert F, Schleicher M, Soldati T. (2002) High-resolution dissection of phagosome maturation reveals distinct membrane trafficking phases. Mol Biol Cell.; 13: 3508-20.
  • Guay J, Falgueyret JP, Ducret A, Percival MD, Mancini JA. (2000) Potency and selectivity of inhibition of cathepsin K, L and S by their respective propeptides. Eur J Biochem.; 267: 6311-8.
  • Guex N, Peitsch MC. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis.; 18: 2714-23.
  • Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D. (1998) Crystal structure of porcine cathepsin H determined at 2.1 Å resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure.; 6: 51-61.
  • Guo YL, Kurz U, Schultz JE, Lim CC, Wiederanders B, Schilling K. (2000) The alpha1/2 helical backbone of the prodomains defines the intrinsic inhibitory specificity in the cathepsin L-like cysteine protease subfamily. FEBS Lett.; 469: 203-7.
  • Hara K, Kominami E, Katunuma N. (1988) Effect of proteinase inhibitors on intracellular processing of cathepsin B, H and L in rat macrophages. FEBS Lett.; 231: 229-31.
  • Horn M, Baudys M, Voburka Z, Kluh I, Vondrasek J, Mares M. (2002) Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I). Protein Sci.; 11: 933-43.
  • Hou WS, Bromme D, Zhao Y, Mehler E, Dushey C, Weinstein H, Miranda CS, Fraga C, Greig F, Carey J, Rimoin DL, Desnick RJ, Gelb BD. (1999) Characterization of novel cathepsin K mutations in the pro and mature polypeptide regions causing pycnodysostosis. J Clin Invest.; 103: 731-8.
  • Hou WS, Li W, Keyszer G, Weber E, Levy R, Klein MJ, Gravallese EM, Goldring SR, Bromme D. (2002) Comparison of cathepsins K and S expression within the rheumatoid and osteoarthritic synovium. Arthritis Rheum.; 46: 663-74.
  • Huete-Perez JA, Engel JC, Brinen LS, Mottram JC, McKerrow JH. (1999) Protease trafficking in two primitive eukaryotes is mediated by a prodomain protein motif. J Biol Chem.; 274: 16249-56.
  • Ishidoh K, Kominami E. (1995) Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem Biophys Res Commun.; 217: 624-31.
  • Ishidoh K, Saido TC, Kawashima S, Hirose M, Watanabe S, Sato N, Kominami E. (1998) Multiple processing of procathepsin L to cathepsin L in vivo. Biochem Biophys Res Commun.; 252: 202-7.
  • Ishidoh K, Takeda-Ezaki M, Watanabe S, Sato N, Aihara M, Imagawa K, Kikuchi M, Kominami E. (1999) Analysis of where and which types of proteinases participate in lysosomal proteinase processing using bafilomycin A1 and Helicobacter pylori Vac A toxin. J Biochem (Tokyo).; 125: 770-9.
  • Jerala R, Zerovnik E, Kidric J, Turk V. (1998) pH-Induced conformational transitions of the propeptide of human cathepsin L - A role for a molten globule state in zymogen activation. J Biol Chem.; 273: 11498-504.
  • Kamphuis IG, Kalk KH, Swarte MBA, Drenth J. (1984) Structure of papain refined at 1.65 Å resolution. J Mol Biol.; 179: 233-56.
  • Karrer KM, Pfeifer SL, DiTomas ME. (1993) Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci U S A.; 90: 3063-7.
  • Kawabata T, Nishimura Y, Higaki M, Kato K. (1993) Purification and processing of rat liver procathepsin B. J Biochem (Tokyo).; 113: 389-94.
  • Kihara M, Kakegawa H, Matano Y, Murata E, Tsuge H, Kido H, Katunuma N. (2002) Chondroitin sulfate proteoglycan is a potent enhancer in the processing of procathepsin L. Biol Chem.; 383: 1925-9.
  • Konttinen YT, Mandelin J, Li TF, Salo J, Lassus J, Liljestrom M, Hukkanen M, Takagi M, Virtanen I, Santavirta S. (2002) Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum.; 46: 953-60.
  • Krasko A, Gamulin V, Seack J, Steffen R, Schroder HC, Muller WE. (1997) Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA. Mol Mar Biol Biotechnol.; 6: 296-307.
  • Kreusch S, Fehn M, Maubach G, Nissler K, Rommerskirch W, Schilling K, Weber E, Wenz I, Wiederanders B. (2000) An evolutionarily conserved tripartite tryptophan motif stabilizes the prodomains of cathepsin L-like cysteine proteases. Eur J Biochem.; 267: 2965-72.
  • Kurata M, Yamamoto Y, Watabe S, Makino Y, Ogawa K, Takahashi SY. (2001) Bombyx cysteine proteinase inhibitor. (BCPI) homologous to propeptide regions of cysteine proteinases is a strong, selective inhibitor of cathepsin L-like cysteine proteinases. J Biochem (Tokyo).; 130: 857-63.
  • Lalmanach G, Lecaille F, Chagas JR, Authie E, Scharfstein J, Juliano MA, Gauthier F. (1998) Inhibition of trypanosomal cysteine proteinases by their propeptides. J Biol Chem.; 273: 25112-6.
  • Lecaille F, Kaleta J, Bromme D. (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev.; 102: 4459-88.
  • Linke M, Jordans S, Mach L, Herzog V, Brix K. (2002) Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol Chem.; 383: 773-84.
  • Linnevers C, Smeekens SP, Bromme D. (1997a) Human cathepsin W, a putative cysteine protease predominantly expressed in CD8+ T-lymphocytes. FEBS Lett.; 405: 253-9.
  • Linnevers CJ, McGrath ME, Armstrong R, Mistry FR, Barnes MG, Klaus JL, Palmer JT, Katz BA, Bromme D. (1997b) Expression of human cathepsin K in Pichia pastoris and preliminary crystallographic studies of an inhibitor complex. Protein Sci.; 6: 919-21.
  • Lukong KE, Elsliger MA, Mort JS, Potier M, Pshezhetsky AV. (1999) Identification of UDP-N-acetylglucosamine-phosphotransferase-binding sites on the lysosomal proteases, cathepsins A, B, and D. Biochemistry.; 38: 73-80.
  • Mach L, Mort JS, Glossl J. (1994) Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J Biol Chem.; 269: 13030-5.
  • Mason RW, Massey SD. (1992) Surface activation of pro-cathepsin L. Biochem Biophys Res Commun.; 189: 1659-66.
  • Maubach G, Schilling K, Rommerskirch W, Wenz I, Schultz JE, Weber E, Wiederanders B. (1997) The inhibition of cathepsin S by its propeptid e - specificity and mechanism of action. Eur J Biochem.; 250: 745-50.
  • McDonald JK, Emerick JM. (1995) Purification and characterization of procathepsin L, a self-processing zymogen of guinea pig spermatozoa that acts on a cathepsin D assay substrate. Arch Biochem Biophys.; 323: 409-22.
  • McGrath ME. (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct.; 28: 181-204.
  • McGrath ME, Eakin AE, Engel JC, Mckerrow JH, Craik CS, Fletterick RJ. (1995) The crystal-structure of Cruzain - a therapeutic target for Chagas-disease. J Mol Biol.; 247: 251-9.
  • McIntyre GF, Erickson AH. (1993) The lysosomal proenzyme receptor that binds procathepsin L to microsomal membranes at pH 5 is a 43-kDa integral membrane protein. Proc Natl Acad Sci U S A.; 90: 10588-92.
  • McIntyre GF, Godbold GD, Erickson AH. (1994) The pH-dependent membrane association of procathepsin L is mediated by a 9-residue sequence within the propeptide. J Biol Chem.; 269: 567-72.
  • McQueney MS, Amegadzie BY, D'Alessio K, Hanning CR, McLaughlin MM, McNulty D, Carr SA, Ijames C, Kurdyla J, Jones CS. (1997) Autocatalytic activation of human cathepsin K. J Biol Chem.; 272: 13955-60.
  • Mehtani S, Gong Q, Panella J, Subbiah S, Peffley DM, Frankfater A. (1998) In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells. J Biol Chem.; 273: 13236-44.
  • Menard R, Carmona E, Takebe S, Dufour E, Plouffe C, Mason P, Mort JS. (1998) Autocatalytic processing of recombinant human procathepsin L. Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J Biol Chem.; 273: 4478-84.
  • Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N, Bode W. (1991) The refined 2.15-Å X-ray crystal-structure of human liver cathepsin-B - the structural basis for its specificity. EMBO J.; 10: 2321-30.
  • Nagler DK, Sulea T, Menard R. (1999a) Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Biochem Biophys Res Commun.; 257: 313-8.
  • Nagler DK, Zhang R, Tam W, Sulea T, Purisima EO, Menard R. (1999b) Human cathepsin X: A cysteine protease with unique carboxypeptidase activity. Biochemistry.; 38: 12648-54.
  • Nettis E, Napoli G, Ferrannini A, Tursi A. (2001) IgE-mediated allergy to bromelain. Allergy.; 56: 257-8.
  • Nishimura Y, Kato K. (1987a) Intracellular transport and processing of lysosomal cathepsin B. Biochem Biophys Res Commun.; 148: 254-9.
  • Nishimura Y, Kato K. (1987b) Intracellular transport and processing of lysosomal cathepsin H. Biochem Biophys Res Commun.; 148: 329-34.
  • Nishimura Y, Kato K. (1988) Identification of latent procathepsin H in microsomal lumen: characterization of proteolytic processing and enzyme activation. Arch Biochem Biophys.; 260: 712-8.
  • Nishimura Y, Amano J, Sato H, Tsuji H, Kato K. (1988a) Biosynthesis of lysosomal cathepsins B and H in cultured rat hepatocytes. Arch Biochem Biophys.; 262: 159-70.
  • Nishimura Y, Furuno K, Kato K. (1988b) Biosynthesis and processing of lysosomal cathepsin L in primary cultures of rat hepatocytes. Arch Biochem Biophys.; 263: 107-16.
  • Nishimura Y, Kawabata T, Kato K. (1988c) Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Arch Biochem Biophys.; 261: 64-71.
  • Nishimura Y, Kawabata T, Furuno K, Kato K. (1989) Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes. Arch Biochem Biophys.; 271: 400-6.
  • Nishimura Y, Kato K, Furuno K, Himeno M. (1995) Inhibitory effect of leupeptin on the intracellular maturation of lysosomal cathepsin L in primary cultures of rat hepatocytes. Biol Pharm Bull.; 18: 945-50.
  • Nissler K, Kreusch S, Rommerskirch W, Strubel W, Weber E, Wiederanders B. (1998) Sorting of non-glycosylated human procathepsin S in mammalian cells. Biol Chem.; 379: 219-24.
  • Nomura T, Fujisawa Y. (1997) Processing properties of recombinant human procathepsin L. Biochem Biophys Res Commun.; 230: 143-6.
  • Oda K, Nishimura Y, Ikehara Y, Kato K. (1991) Bafilomycin A1 inhibits the targeting of lysosomal acid hydrolases in cultured hepatocytes. Biochem Biophys Res Commun.; 178: 369-77.
  • Ogino T, Kaji T, Kawabata M, Satoh K, Tomoo K, Ishida T, Yamazaki H, Ishidoh K, Kominami E. (1999) Function of the propeptide region in recombinant expression of active procathepsin L in Escherichia coli. J Biochem (Tokyo).; 126: 78-83.
  • Ohta Y, Hojo H, Aimoto S, Kobayashi T, Zhu X, Jordan F, Inouye M. (1991) Pro-peptide as an intramolecular chaperone: renaturation of denatured subtilisin E with a synthetic pro-peptide [corrected]. Mol Microbiol.; 5: 1507-10.
  • Pietschmann S, Fehn M, Kaulmann G, Wenz I, Wiederanders B, Schilling K. (2002) Foldase function of the cathepsin S proregion is strictly based upon its domain structure. Biol Chem.; 383: 1453-8.
  • Polgar L, Halasz P. (1982) Current problems in mechanistic studies of serine and cysteine proteinases. Biochem J.; 207: 1-10.
  • Quraishi O, Nagler DK, Fox T, Sivaraman J, Cygler M, Mort JS, Storer AC. (1999) The occluding loop in cathepsin B defines the pH dependence of inhibition by its propeptide. Biochemistry.; 38: 5017-23.
  • Rieman DJ, McClung HA, Dodds RA, Hwang SM, Holmes MW, James IE, Drake FH, Gowen M. (2001) Biosynthesis and processing of cathepsin K in cultured human osteoclasts. Bone.; 28: 282-9.
  • Roche L, Tort J, Dalton JP. (1999) The propeptide of Fasciola hepatica cathepsin L is a potent and selective inhibitor of the mature enzyme. Mol Biochem Parasitol.; 98: 271-7.
  • Rowan AD, Mason P, Mach L, Mort JS. (1992) Rat procathepsin B. Proteolytic processing to the mature form in vitro. J Biol Chem.; 267: 15993-9.
  • Rozman J, Stojan J, Kuhelj R, Turk V, Turk B. (1999) Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett.; 459: 358-62.
  • Sajid M, McKerrow JH. (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol.; 120: 1-21.
  • Salminen A, Gottesman MM. (1990) Inhibitor studies indicate that active cathepsin L is probably essential to its own processing in cultured fibroblasts. Biochem J.; 272: 39-44.
  • Santamaria I, Velasco G, Pendas AM, Fueyo A, Lopez-Otin C. (1998) Cathepsin Z, a novel human cysteine proteinase with a short propeptide domain and a unique chromosomal location. J Biol Chem.; 273: 16816-23.
  • Santilman V, Jadot M, Mainferme F. (2002) Importance of the propeptide in the biosynthetic maturation of rat cathepsin C. Eur J Cell Biol.; 81: 654-63.
  • Schaschke N, Assfalg-Machleidt I, Machleidt W, Moroder L. (1998) Substrate/propeptide-derived endo-epoxysuccinyl peptides as highly potent and selective cathepsin B inhibitors. FEBS Lett.; 421: 80-2.
  • Schilling K, Pietschmann S, Fehn M, Wenz I, Wiederanders B. (2001) Folding incompetence of cathepsin L-like cysteine proteases may be compensated by the highly conserved, domain-building N-terminal extension of the proregion. Biol Chem.; 382: 859-65.
  • Schlereth A, Standhardt D, Mock HP, Muntz K. (2001) Stored cysteine proteinases start globulin mobilization in protein bodies of embryonic axes and cotyledons during vetch. (Vicia sativa L.) seed germination. Planta.; 212: 718-27.
  • Sivaraman J, Nagler DK, Zhang R, Menard R, Cygler M. (2000) Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine. J Mol Biol.; 295: 939-51.
  • Smith SM, Gottesman MM. (1989) Activity and deletion analysis of recombinant human cathepsin L expressed in Escherichia coli. J Biol Chem.; 264: 20487-95.
  • Song J, Xu P, Xiang H, Su Z, Storer AC, Ni F. (2000) The active-site residue Cys-29 is responsible for the neutral-pH inactivation and the refolding barrier of human cathepsin B. FEBS Lett.; 475: 157-62.
  • Tanaka Y, Tanaka R, Kawabata T, Noguchi Y, Himeno M. (2000) Lysosomal cysteine protease, cathepsin B, is targeted to lysosomes by the mannose 6-phosphate-independent pathway in rat hepatocytes: site-specific phosphorylation in oligosaccharides of the proregion. J Biochem (Tokyo).; 128: 39-48.
  • Tao K, Stearns NA, Dong J, Wu QL, Sahagian GG. (1994) The proregion of cathepsin L is required for proper folding, stability, and ER exit. Arch Biochem Biophys.; 311: 19-27.
  • Taylor MAJ, Baker KC, Briggs GS, Connerton IF, Cummings NJ, Pratt KA, Revell DF, Freedman RB, Goodenough PW. (1995a) Recombinant pro-regions from papain and papaya proteinase IV are selective high-affinity inhibitors of the mature papaya enzymes. Protein Eng.; 8: 59-62.
  • Taylor MAJ, Briggs GS, Baker KC, Cummings NJ, Pratt KA, Freedman RB, Goodenough PW. (1995b) Expression of the pro-regions of papain and papaya proteinase-IV in Escherichia coli and their inhibition of mature cysteine proteinases. Biochem Soc Trans.; 23: S80-S80.
  • Tobbell DA, Middleton BJ, Raines S, Needham MR, Taylor IW, Beveridge JY, Abbott WM. (2002) Identification of in vitro folding conditions for procathepsin S and cathepsin S using fractional factorial screens. Protein Expr Purif.; 24: 242-54.
  • Turk D, Podobnik M, Kuhelj R, Dolinar M, Turk V. (1996) Crystal structures of human procathepsin B at 3.2 and 3.3 Ångstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS Lett.; 384: 211-4.
  • van der Stappen JW, Williams AC, Maciewicz RA, Paraskeva C. (1996) Activation of cathepsin B, secreted by a colorectal cancer cell line requires low pH and is mediated by cathepsin D. Int J Cancer.; 67: 547-4.
  • Vernet T, Tessier DC, Richardson C, Laliberte F, Khouri HE, Bell AW, Storer AC, Thomas DY. (1990) Secretion of functional papain precursor from insect cells. Requirement for N-glycosylation of the pro-region. J Biol Chem.; 265: 16661-6.
  • Vernet T, Khouri HE, Laflamme P, Tessier DC, Musil R, Gour-Salin BJ, Storer AC, Thomas DY. (1991) Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J Biol Chem.; 266: 21451-7.
  • Vernet T, Berti PJ, de Montigny C, Musil R, Tessier DC, Menard R, Magny MC, Storer AC, Thomas DY. (1995) Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. J Biol Chem.; 270: 10838-46.
  • Visal S, Taylor MA, Michaud D. (1998) The proregion of papaya proteinase IV inhibits Colorado potato beetle digestive cysteine proteinases. FEBS Lett.; 434: 401-5.
  • Volkel H, Kurz U, Linder J, Klumpp S, Gnau V, Jung G, Schultz JE. (1996) Cathepsin L is an intracellular and extracellular protease in Paramecium tetraurelia. Purification, cloning, sequencing and specific inhibition by its expressed propeptide. Eur J Biochem.; 238: 198-206.
  • Wang B, Shi GP, Yao PM, Li Z, Chapman HA, Bromme D. (1998) Human cathepsin F. Molecular cloning, functional expression, tissue localization, and enzymatic characterization. J Biol Chem.; 273: 32000-8.
  • Wex T, Levy B, Smeekens SP, Ansorge S, Desnick RJ, Bromme D. (1998) Genomic structure, chromosomal localization, and expression of human cathepsin W. Biochem Biophys Res Commun.; 248: 255-61.
  • Wex T, Levy B, Wex H, Bromme D. (1999) Human cathepsins F and W: A new subgroup of cathepsins. Biochem Biophys Res Commun.; 259: 401-7.
  • Wex T, Buhling F, Wex H, Gunther D, Malfertheiner P, Weber E, Bromme D. (2001) Human cathepsin W, a cysteine protease predominantly expressed in NK cells, is mainly localized in the endoplasmic reticulum. J Immunol.; 167: 2172-8.
  • Wiederanders B, Kirschke H. (1989) The processing of a cathepsin L precursor in vitro. Arch Biochem Biophys.; 272: 516-21.
  • Wiederanders B, Bromme D, Kirschke H, von Figura K, Schmidt B, Peters C. (1992) Phylogenetic conservation of cysteine proteinases. Cloning and expression of a cDNA coding for human cathepsin S. J Biol Chem.; 267: 13708-13.
  • Yamamoto Y, Watabe S, Kageyama T, Takahashi SY. (1999a) A novel inhibitor protein for Bombyx cysteine proteinase is homologous to propeptide regions of cysteine proteinases. FEBS Lett.; 448: 257-60.
  • Yamamoto Y, Watabe S, Kageyama T, Takahashi SY. (1999b) Proregion of Bombyx mori cysteine proteinase functions as an intramolecular chaperone to promote proper folding of the mature enzyme. Arch Insect Biochem Physiol.; 42: 167-78.
  • Yamamoto Y, Watabe S, Kageyama T, Takahashi SY. (1999c) Purification and characterization of Bombyx cysteine proteinase specific inhibitors from the hemolymph of Bombyx mori. Arch Insect Biochem Physiol.; 42: 119-29.
  • Yamamoto Y, Kurata M, Watabe S, Murakami R, Takahashi SY. (2002) Novel cysteine proteinase inhibitors homologous to the proregions of cysteine proteinases. Curr Protein Pept Sci.; 3: 231-8.
  • Zhu XL, Ohta Y, Jordan F, Inouye M. (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature.; 339: 483-84.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv50i3p691kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.