PL EN


Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 2 | 389-404
Article title

The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis.

Content
Title variants
Languages of publication
EN
Abstracts
EN
The outer mitochondrial membrane pore (VDAC) changes its structure either voltage-dependently in artificial membranes or physiologically by interaction with the adenine nucleotide translocase (ANT) in the c-conformation. This interaction creates contact sites and leads in addition to a specific organisation of cytochrome c in the VDAC-ANT complexes. The VDAC structure that is specific for contact sites generates a signal at the surface for several proteins in the cytosol to bind with high capacity, such as hexokinase, glycerol kinase and Bax. If the VDAC binding site is not occupied by hexokinase, the VDAC-ANT complex has two critical qualities: firstly, Bax gets access to cytochrome c and secondly the ANT is set in its c-conformation that easily changes conformation into an unspecific channel (uniporter) causing permeability transition. Activity of bound hexokinase protects against both, it hinders Bax binding and employs the ANT as anti-porter. The octamer of mitochondrial creatine kinase binds to VDAC from the inner surface of the outer membrane. This firstly restrains interaction between VDAC and ANT and secondly changes the VDAC structure into low affinity for hexokinase and Bax. Cytochrome c in the creatine kinase complex will be differently organised, not accessible to Bax and the ANT is run as anti-porter by the active creatine kinase octamer. However, when, for example, free radicals cause dissociation of the octamer, VDAC interacts with the ANT with the same results as described above: Bax-dependent cytochrome c release and risk of permeability transition pore opening.
Publisher

Year
Volume
50
Issue
2
Pages
389-404
Physical description
Dates
published
2003
accepted
2003-05-28
received
2003-05-9
Contributors
  • A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
  • Department of Biology, University of Konstanz, Konstanz, Germany
References
  • Adams V, Bosch W, Schlegel J, Wallimann T, Brdiczka D. (1989) Further characterization of contact sites from mitochondria of different tissues: topology of peripheral kinases. Biochim Biophys Acta.; 981: 213-25.
  • Bauer MK, Schubert A, Rocks O, Grimm S. (1999) Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J Cell Biol.; 147: 1493-1502.
  • Benz R. (1994) Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta.; 1197: 167-96.
  • Benz R, Wojtczak L, Bosch W, Brdiczka D. (1988) Inhibition of adenine nucleotide transport through the mitochondrial porin by a synthetic polyanion. FEBS Lett.; 231: 75-80.
  • Benz R, Kottke M, Brdiczka D. (1990) The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta.; 1022: 311-8.
  • Beutner G, Ruck A, Riede B, Welte W, Brdiczka D. (1996) Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett.; 396: 189-95.
  • Beutner G, Ruck A, Riede B, Brdiczka D. (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta.; 1368: 7-18.
  • Beyer K, Klingenberg M. (1985) ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry.; 24: 3821-6
  • Brdiczka D, Kaldis P, Wallimann T. (1994) In vitro complex formation between octamer of creatine kinase and porin. J Biol Chem.; 269: 27640-4.
  • Brustovetsky N, Klingenberg M. (1996) The mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry.; 35: 8483-8.
  • Bucheler K, Adams V, Brdiczka D. (1991) Localization of the ATP/ADP translocator in the inner membrane and regulation of contact sites between mitochondrial envelope membranes by ADP. A study on freeze fractured isolated liver mitochondria. Biochim Biophys Acta.; 1056: 233-42.
  • Buhler S, Michels J, Wendt S, Ruck A, Brdiczka D, Welte W, Przybylski M. (1998) Mass spectrometric mapping of ion channel proteins (Porins) and identification of their supramolecular membrane assembly. Proteins.; 2: 63-73.
  • Capano M, Crompton M. (2002) Biphasic translocation of Bax to mitochondria. Biochem J.; 367: 169-78.
  • Casadio R, Jacoboni I, Messina A, De Pinto V. (2002) A 3D model of the voltage-dependent anion channel (VDAC). FEBS Lett.; 520: 1-7.
  • Colombini M. (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature.; 279: 643-5.
  • Crompton M, Costi A. (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca2+ and oxidative stress. Eur J Biochem.; 178: 489-501.
  • Crompton M, Ellinger H, Costi A. (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J.; 255: 357-60.
  • Crompton M, Virji S, Ward JM. (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem.; 258: 729-35.
  • Dierks T, Salentin A, Heberger C, Kramer R. (1990) The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents. Biochim Biophys Acta.; 1028: 268-80.
  • Dolder M, Wendt S, Wallimann T. (2001) Mitochondrial creatine kinase in contact sites: interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage. Biol Signals Recept.; 10: 93-111.
  • Dolder M, Walzel B, Spee O, Schlattner U, Wallimann T. (2003) Inhibition of the mitochondrial permeability transition by creatine kinase substrates, requirement for microcompartmentation. J Biol Chem.; 278: 17760-6.
  • Dorner A, Schulze K, Rauch U, Schultheiss HP. (1997) Adenine nucleotide translocator in dilated cardiomyopathy: pathophysiological alterations in expression and function. Mol Cell Biochem.; 174: 261-9.
  • Fiek C, Benz R, Roos N, Brdiczka D. (1982) Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria. Biochim Biophys Acta.; 688: 429-40.
  • Gellerich FN, Wagner M, Kapischke M, Wicker U, Brdiczka D. (1993) Effect of macromolecules on the regulation of the mitochondrial outer membrane pore and the activity of adenylate kinase in the inter-membrane space. Biochim Biophys Acta.; 1142: 217-27.
  • Gellerich FN, Laterveer FD, Zierz S, Nicolay K. (2002) The quantification of ADP diffusion gradients across the outer membrane of heart mitochondria in the presence of macromolecules. Biochim Biophys Acta.; 1554: 48-56.
  • Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev.; 15: 1406-18.
  • Halestrap AP, Davidson AM. (1990) Inhibition of Ca2+-induced large amplitude swelling of mitochondria by cyclosporin A is probably caused by binding to a matrix peptidylprolyl cis-trans-isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J.; 268: 153-60.
  • Halestrap AP, McStay GP, Clarke SJ. (2002) The permeability transition pore complex: another view. Biochimie.; 84: 153-66.
  • Haworth RA, Hunter PR. (1980) Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides J Membr Biol.; 57: 231-6.
  • Hashimoto M, Wilson JE. (2000) Membrane potential-dependent conformational changes in mitochondrially bound hexokinase in brain. Arch Biochem Biophys.; 384: 163-73.
  • Heldt HW, Klingenberg M, Milovancev M. (1972) Differences between the ATP-ADP ratios in the mitochondrial matrix and in the extramitochondrial space. Eur J Biochem.; 30: 434-40.
  • Kinally KW, Zorov DB, Antonenko YN, Snyder SH, McEnery MW, Tedeschi H. (1993) Mitochondrial diazepine receptor linked to inner membrane ion channels by nanomolar actions of ligand. Proc Natl Acad Sci U S A.; 90: 1374-8.
  • Klingenberg M, Grebe K, Falkner G. (1971) Interaction between the binding of 35S-atractyloside and bongkrekic acid at mitochondrial membranes. FEBS Lett.; 16: 301-3.
  • Kluck RM, Green DR, Newmeyer DD. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-regulation of apoptosis. Science.; 275: 1132-6.
  • Knoll G, Brdiczka D. (1983) Changes in freeze-fracture mitochondrial membranes correlated to their energetic state. Biochim Biophys Acta.; 733: 102-10.
  • Konig T, Kocsis B, Meszaros L, Nahm K, Zoltan S, Horvath I. (1977) Interaction of a synthetic polyanion with rat liver mitochondria. Biochim Biophys Acta.; 462: 380-9.
  • Kottke M, Wallimann T, Brdiczka D. (1994) Dual localization of mitochondrial creatine kinase in brain mitochondria. Biochem Med Metab Biol.; 51: 105-17.
  • Kramer R, Palmieri F. (1989) Molecular aspects of isolated and reconstituted carrier proteins from animal mitochondria. Biochim Biophys Acta.; 974: 1-23.
  • Lemeshko VV. (2002) Model of the outer membrane potential generation by the inner membrane of mitochondria. Biophys J.; 82: 684-92.
  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell.; 86: 147-57.
  • Liu MY, Colombini M. (1992) A soluble mitochondrial protein increases the voltage dependence of the mitochondrial channel, VDAC. J Bioenerg Biomembr.; 24: 41-6.
  • O'Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T. (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett.; 414: 253-7.
  • Ohlendieck K, Riesinger I, Adams V, Krause J, Brdiczka D. (1986) Enrichment and biochemical characterization of boundary membrane contact sites in rat-liver mitochondria. Biochim Biophys Acta.; 860: 672-89.
  • Ostlund AK, Gohring U, Krause J, Brdiczka D. (1983) The binding of glycerol kinase to the outer membrane of rat liver mitochondria: Its importance in metabolic regulation. Biochem Med.; 30: 231-45.
  • Pastorino JG, Tafani M, Rothman RJ, Marcinkeviciute A, Hoek JB, Farber JL. (1999) Functional consequences of sustained or transient activation by Bax of the mitochondrial permeability transition pore. J Biol Chem.; 274: 31734-39.
  • Pastorino JG, Shulga N, Hoek JB. (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem.; 277: 7610-18.
  • Rojo M, Hovius R, Demel RA, Nicolay K, Wallimann T. (1991) Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem.; 266: 20290-5.
  • Rostovtseva T, Colombini M. (1997) VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J.; 72: 1954-62.
  • Ruck A, Dolder M, Wallimann T, Brdiczka D. (1998) Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett.; 426: 97-101.
  • Saks V, Kuznetsov A, Khuchua Z, Vasilyeva E, Belikova J, Kesvatera T, Tiivel T. (1995) Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol.; 27: 625-45.
  • Saks V, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regnitz-Zagrosek V, Fleck E, Seppet E. (2001) Intracellular energetic units in red muscle cells. Biochem J.; 356: 643-57.
  • Saleh ASS, Acharya S, Fishel R, Alnemri ES. (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem.; 274: 17941-5.
  • Sampson MJ, Lovell RS, Craigen WJ. (1997) The murine voltage-dependent anion channel gene family. Conserved structure and function. J Biol Chem.; 272: 18966-73.
  • Schlattner U, Dolder M, Wallimann T, Tokarska-Schlattner M. (2001) Mitochondrial creatine kinase and mitochondrial outer membrane porin show direct interaction that is modulated by calcium. J Biol Chem.; 276: 48027-30.
  • Soboll S, Brdiczka D, Jahnke D, Schmidt A, Schlattner U, Wendt S, Wyss M, Wallimann T. (1999) Octamer-dimer transitions of mitochondrial creatine kinase in heart disease. J Mol Cell Cardiol.; 31: 857-66.
  • Song J, Midson C, Blachly-Dyson E, Forte M, Colombini M. (1998) The sensor regions of VDAC are translocated from within the membrane to the surface during the gating processes. Biophys J.; 74: 2926-44.
  • Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB. (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell.; 91: 627-37.
  • Vyssokikh MY, Katz A, Ruck A, Wunsch C, Dorner A, Zorov DB, Brdiczka D. (2001) Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D. Biochem J.; 358: 349-58.
  • Vyssokikh MY, Zorova L, Zorov D, Heimlich G, Jurgensmeier JM, Brdiczka D. (2002) Bax releases cytochrome c preferentially from a complex between porin and adenine nucleotide translocator. Hexokinase activity suppresses this effect. Mol Biol Rep.; 29: 93-6.
  • Weiler U, Riesinger I, Knoll G, Brdiczka D. (1985) The regulation of mitochondrial-bound hexokinases in the liver. Biochem Med.; 33: 223-35.
  • Welte W, Nestel U, Wacker T, Diederichs K. (1995) Structure and function of the porin channel. Kidney Int.; 48: 930-40.
  • Wicker U, Bucheler K, Gellerich FN, Wagner M, Kapischke M, Brdiczka D. (1993) Effect of macromolecules on the structure of the mitochondrial inter-membrane space and the regulation of hexokinase. Biochim Biophys Acta.; 1142: 228-39.
  • Wieckowski MR, Vyssokikh M, Dymkowska D, Antonsson B, Brdiczka D, Wojtczak L. (2001) Oligomeric C-terminal truncated Bax preferentially releases cytochrome c but not adenylate kinase from mitochondria, outer membrane vesicles and proteoliposomes. FEBS Lett.; 505: 453-9.
  • Xie G, Wilson JE. (1990) Tetrameric structure of mitochondrially bound rat brain hexokinase: A crosslinking study. Arch Biochem Biophys.; 276: 285-93.
  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science.; 275: 1129-32.
  • Zimmerberg J, Parsegian VA. (1986) Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature.; 323: 36-9.
  • Zoratti M, Szabo I. (1995) The mitochondrial permeability transition. Biochim Biophys Acta.; 1241: 139-76.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv50i2p389kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.