Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 2 | 337-365

Article title

The structure of the Ca2+-ATPase of sarcoplasmic reticulum.


Title variants

Languages of publication



In this article the morphology of sarcoplasmic reticulum, classification of Ca2+-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca2+-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca2+-ATPase in sarcoplasmic reticulum multilayers. In addition, targeting of the Ca2+-ATPase to the sarcoplasmic reticulum is discussed.








Physical description




  • tate University of New York, Upstate Medical University, College of Graduate Studies, Syracuse, New York, U.S.A.
  • M. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland


  • Andersen JP, Jorgensen PL. (1985) Conformational states of sarcoplasmic reticulum Ca2+-ATPase as studied by proteolytic cleavage. J Membr Biol.; 88: 187-98.
  • Andersen JP, Sorensen TL, Povlsen K, Vilsen B. (2001) Importance of transmembrane segment M3 of the sarcoplasmic reticulum Ca2+-ATPase for control of the gateway to the Ca2+ sites. J Biol Chem.; 276: 23312-21.
  • Andersen JP. (1995) Dissection of the functional domains of the sarcoplasmic reticulum Ca2+ ATPase by site directed mutagenesis. Biosci Rep.; 15: 243-61.
  • Andersen JP. (1989) Monomer oligomer equilibrium of sarcoplasmic reticulum Ca2+-ATPase and the role of subunit interaction in the Ca2+ pump mechanism. Biochim Biophys Acta.; 988: 47-72.
  • Apell H-J, Karlish SJ. (2001) Functional properties of Na-K ATPase and their structural implications as detected by biophysical techniques. J Membr Biol.; 180: 1-9.
  • Aravind L, Galperin MY, Koonin EV. (1998) The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem Sci.; 23: 127-9.
  • Arrondo JLR, Mantsch HH, Mullner N, Pikula S, Martonosi A. (1987) Infrared spectroscopic characterization of the structural changes connected with the E1-->E2 transition in the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem.; 262: 9037-43.
  • Asturias FJ, Blasie JK. (1989) Effect of Mg2+ concentration on Ca2+ uptake kinetics and structure of the sarcoplasmic reticulum membrane. Biophys J.; 55: 739-53.
  • Asturias FJ, Blasie JK. (1991) Location of high affinity metal binding sites in the profile structure of the Ca2+-ATPase in the sarcoplasmic reticulum by resonance X-ray diffraction. Biophys J.; 59: 488-502.
  • Asturias FJ, Fischetti RJ, Blasie JK. (1994a) Changes in the relative occupancy of metal binding sites in the profile structure of the sarcoplasmic reticulum membrane induced by phosphorylation of the Ca2+-ATPase enzyme in the presence of terbium: a time-resolved X-ray diffraction study. Biophys J.; 66: 1665-77.
  • Asturias FJ, Fischetti RF, Blasie JK. (1994b) Changes in the profile structure of the sarcoplasmic reticulum membrane induced by phosphorylation of the Ca2+-ATPase enzyme in the presence of terbium: a time-resolved X-ray diffraction study. Biophys J.; 66: 1653-64.
  • Asturias FJ, Pascolini D, Blasie JK. (1990) Evidence that lipid lateral phase separation induces functionally significant structural changes in the Ca2+ ATPase of sarcoplasmic reticulum. Biophys J.; 58: 205-17.
  • Baskin RJ, Deamer DW. (1969) Comparative ultrastructure and calcium transport in heart and skeletal muscle microsomes. J Cell Biol.; 43: 610-5.
  • Bayle D, Weeks D, Sachs G. (1995) The membrane topology of the rat sarcoplasmic and endoplasmic reticulum calcium ATPases by in vitro translation scanning. J Biol Chem.; 270: 25678-84.
  • Beeler TJ, Dux L, Martonosi AN. (1984) Effect of Na3VO4 and membrane potential on the structure of sarcoplasmic reticulum membrane. J Membr Biol.; 78: 73-9.
  • Bigelow DJ, Inesi G. (1992) Contributions of chemical derivatization and spectroscopic studies to the characterization of the Ca2+ transport ATPase of sarcoplasmic reticulum. Biochim Biophys Acta.; 1113: 323-38.
  • Blasie JK, Asturias FJ, DeLong LJ. (1992) Time-resolved X-ray diffraction studies on the mechanism of active Ca2+ transport by the sarcoplasmic reticulum Ca2+-ATPase. Ann NY Acad Sci.; 671: 11-8.
  • Blasie JK, Herbette L, Pachence J. (1985a) Biological membrane structure as seen by X-ray and neutron diffraction techniques. J Membr Biol.; 86: 1-7.
  • Blasie JK, Herbette LG, Pascolini D, Skita V, Pierce DH, Scarpa A. (1985b) Time resolved X-ray diffraction studies of the sarcoplasmic reticulum membrane during active transport. Biophys J.; 48: 9-18.
  • Blasie JK, Pascolini D, Asturias F, Herbette LG, Pierce D, Scarpa A. (1990) Large-scale structural changes in the sarcoplasmic reticulum appear essential for calcium transport. Biophys J.; 58: 687-93.
  • Boland R, Martonosi A, Tillack TW. (1974) Developmental changes in the composition and function of sarcoplasmic reticulum. J Biol Chem.; 249: 612-23.
  • Brandl CJ, Green NM, Korczak B, MacLennan DH. (1986) Two Ca2+-ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences. Cell.; 44: 597-607.
  • Brandl CJ, deLeon S, Martin S, MacLennan DH. (1987) Adult forms of the Ca2+-ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem.; 262: 3768-74.
  • Burk SE, Lytton J, MacLennan DH, Shull GE. (1989) cDNA cloning, functional expression and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem.; 264: 18561-8.
  • Canet D, Forge V, Guillain F, Mintz E. (1996) Ca2+ translocation across sarcoplasmic reticulum ATPase randomizes the two transported ions. J Biol Chem.; 271: 20566-72.
  • Castellani L, Hardwicke PMD, Vibert P. (1985) Dimer ribbons in the three-dimensional structure of sarcoplasmic reticulum. J Mol Biol.; 185: 579-94.
  • Caswell AH, Brandt NR, Brunschwig J-P, Purkerson S. (1988) Isolation of transverse tubule membranes from skeletal muscle: Ion transport activity, reformation of triad junctions and isolation of junctional spanning protein of triads. Methods Enzymol.; 157: 68-84.
  • Cheong G-W, Young HS, Ogawa H, Toyoshima C, Stokes DL. (1996) Lamellar stacking in three-dimensional crystals of Ca2+-ATPase from sarcoplasmic reticulum. Biophys J.; 70: 1689-99.
  • Chu A, Dixon MC, Saito A, Seiler S, Fleischer S. (1988) Isolation of sarcoplasmic reticulum fractions referable to longitudinal tubules and junctional terminal cisternae from rabbit skeletal muscle. Methods Enzymol.; 157: 36-46.
  • Coan C, Scales DJ, Murphy AJ. (1986) Oligovanadate binding to sarcoplasmic reticulum. Evidence for substrate analogue behaviour. J Biol Chem.; 261: 10394-403.
  • Coan C, Ji JY, Amaral JA. (1994) Ca2+ binding to occluded sites in the CrATP-ATPase complex of sarcoplasmic reticulum: evidence for two independent high affinity sites. Biochemistry.; 33: 3722-31.
  • Costello B, Chadwick C, Fleischer S. (1988) Isolation of the junctional face membrane of sarcoplasmic reticulum. Methods Enzymol.; 157: 46-50.
  • Csermely P, Katopis C, Wallace BA. (1987) The E1-->E2 transition of Ca2+-ATPase in sarcoplasmic reticulum occurs without major changes in secondary structure. Biochem J.; 241: 663-9.
  • Csermely P, Martonosi A, Levy GC, Ejchart AJ. (1985a) 51V-nmr analysis of the binding of vanadium (V) oligoanions to sarcoplasmic reticulum. Biochem J.; 230: 807-15.
  • Csermely P, Varga S, Martonosi A. (1985b) Competition between decavanadate and fluorescein isothiocyanate on the Ca2+-ATPase of sarcoplasmic reticulum. Eur J Biochem.; 150: 455-60.
  • Danko S, Daiho T, Yamasaki K, Kamidochi M, Suzuki H, Toyoshima C. (2001a) ADP insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase has a compact conformation resistant to proteinase K, V8 protease and trypsin. FEBS Lett.; 489: 277-82.
  • Danko S, Yamasaki K, Daiho T, Suzuki H, Toyoshima C. (2001b) Organizationn of cytoplasmic domains of sarcoplasmic reticulum Ca2+-ATPase in E1P and E1ATP states: a limited proteolysis study. FEBS Lett.; 505: 129-35.
  • DeLong LJ, Blasie JK. (1993) Effect of Ca2+ binding on the profile structure of the sarcoplasmic reticulum membrane using time resolved X-ray diffraction. Biophys J.; 64: 1750-9.
  • Dode L, Wuytack F, Kools PF, Baba-Aissa F, Raeymaekers L, Brike F, van de Ven WJ, Casteels R, Brik F. (1996) cDNA cloning, expression and chromosomal localizationn of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene. Biochem J.; 318: 689-99.
  • Dux L, Martonosi A. (1983a) Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem.; 258: 2599-603.
  • Dux L, Martonosi A. (1983b) Ca2+-ATPase membrane crystals in sarcoplasmic reticulum. The effect of trypsin digestion. J Biol Chem.; 258: 10111-5.
  • Dux L, Martonosi A. (1983c) The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membranes. I. The effects of Ca2+, ATP and inorganic phosphate. J Biol Chem.; 258: 11896-902.
  • Dux L, Martonosi A. (1983d) The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membranes II. The influence of membrane potential. J Biol Chem.; 258: 11903-7.
  • Dux L, Martonosi A. (1984) Membrane crystals of Ca2+-ATPase in sarcoplasmic reticulum of fast and slow skeletal and cardiac muscles. Eur J Biochem.; 141: 43-9.
  • Dux L, Papp S, Martonosi A. (1985a) Conformational responses of the tryptic cleavage products of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem.; 260: 13454-8.
  • Dux L, Pikula S, Mullner N, Martonosi A. (1987) Crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem.; 262: 6439-42.
  • Dux L, Taylor KA, Ting-Beall HP, Martonosi A. (1985b) Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions. J Biol Chem.; 260: 11730-43.
  • Ebashi S. (1961) Calcium binding activity of vesicular relaxing factor. J Biochem.; 50: 236-44.
  • Ebashi S, Lipmann F. (1962) Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol.; 14: 389-400.
  • Falson P, Menguy T, Corre F, Bouneau L, de Gracia AG, Soulie S, Centeno F, Moller JV, Champeil P, le Maire M. (1997) The cytoplasmic loop between putative transmembrane segments 6 and 7 in sarcoplasmic reticulum Ca2+-ATPase binds Ca2+ and is functionally important. J Biol Chem.; 272: 17258-62.
  • Ferguson DG, Franzini-Armstrong C, Castellani L, Hardwicke PM, Kenney LJ. (1985) Ordered arrays of Ca2+-ATPase on the cytoplasmic surface of isolated sarcoplasmic reticulum. Biophys J.; 48: 597-605.
  • Foletti D, Guerini D, Carafoli E. (1995) Subcellular targeting of the endoplasmic reticulum and plasma membrane calcium pumps: a study using recombinant chimeras. FASEB J.; 9: 670-80.
  • Forge V, Mintz E, Canet D, Guillain F. (1995) Lumenal Ca2+ dissociation from the phosphorylated Ca2+-ATPase of the sarcoplasmic reticulum is sequential. J Biol Chem.; 270: 18271-6.
  • Franzini-Armstrong C, Ferguson DG. (1985) Density and disposition of Ca2+ ATPase in sarcoplasmic reticulum membrane as determined by shadowing techniques. Biophys J.; 48: 607-15.
  • Girardet J-L, Dupont Y, Lacapere JJ. (1989) Evidence of a Ca2+-induced structural change in the ATP-binding site of the sarcoplasmic reticulum Ca2+-ATPase using terbium formycin triphosphate as an analogue of Mg-ATP. Eur J Biochem.; 184: 131-40.
  • Glynn IM. (2002) A hundred years of sodium pumping. Annu Rev Physiol.; 64: 1-18.
  • Green NM, MacLennan DH. (2002) Calcium callisthenics. Nature.; 418: 598-99.
  • Green NM, Stokes DL. (1992) Structural modelling of P-type ion pumps. Acta Physiol Scand (Suppl.).; 146 (607): 59-68.
  • Gunteski-Humblin A-M, Greeb J, Shull GE. (1988) A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J Biol Chem.; 263: 15032-40.
  • Gutowski-Eckel Z, Mann K, Baumert HG. (1993) Identification of a cross-linked double-peptide from the catalytic site of the Ca2+-ATPase of sarcoplasmic reticulum formed by the Ca2+ and pH-dependent reaction with ATP gammaP-imidazolidate. FEBS Lett.; 324: 314-8.
  • Hasselbach W, Makinose M. (1961) Die calciumpumpe der Erschlaffungsgrana des muskels und ihre abhangigkeit von der ATP-spaltung. Biochem Z.; 333: 518-28.
  • Hasselbach W, Makinose M. (1963) Ober den mechanismus des calciumtransportes durch die membranen des sarkoplasmatischen reticulums. Biochem Z.; 339: 94-111.
  • Hebert H, Purhonen P, Vorum H, Thomsen K, Maunsbach AB. (2001) Three-dimensional structure of renal Na-K-ATPase from cryo-electron microscopy of two-dimensional crystals. J Mol Biol.; 314: 479-94.
  • Heilbrunn LV, Wiercinsky FJ. (1947) Action of various cations on muscle protoplasm. J Cell Comp Physiol.; 19: 15-32.
  • Herbette L, DeFoor P, Fleischer S, Pascolini D, Scarpa A, Blasie JK. (1985) The separate profile structures of the functional calcium pump protein and the phospholipid bilayer within isolated sarcoplasmic reticulum membranes determined by X-ray and neutron diffraction. Biochim Biophys Acta.; 817: 103-22.
  • Highsmith SR, Head MR. (1983) Tb3+ binding to Ca2+ and Mg2+ binding sites on sarcoplasmic reticulum ATPase. J Biol Chem.; 258: 6858-62.
  • Hua S, Inesi G, Toyoshima C. (2000) Distinct topologies of mono- and decavanadate binding and photooxidative cleavage in the sarcoplasmic reticulum ATPase. J Biol Chem.; 275: 30546-50.
  • Ikemoto N, Sreter FA, Nakamura A, Gergely J (1968) Tryptic digestion and localization of calcium uptake and ATPase activity in fragments of sarcoplasmic reticulum. J Ultrastructure Res.; 23: 216-32.
  • Imamura Y, Saito K, Kawakita M. (1984) Conformational change of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum upon binding of Ca2+ and adenyl-5'-yl-imidodiphosphate as detected by trypsin sensitivity analysis. J Biochem.; 95: 1305-13.
  • Jencks WP, Yang T, Peisach D, Myung J. (1993) Calcium ATPase of sarcoplasmic reticulum has four binding sites for calcium. Biochemistry.; 32: 7030-4.
  • Jilka RL, Martonosi AN, Tillack TW. (1975) Effect of the purified (Mg2++Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles. J Biol Chem.; 250: 7511-24.
  • Jona I, Martonosi A. (1986) The effects of membrane potential and lanthanides on the conformation of the Ca2+ transport ATPase in sarcoplasmic reticulum. Biochem J.; 234: 363-71.
  • Jorgensen PL, Pedersen PA. (2001) Structure-function relationships of Na+, K+, ATP or Mg2+ binding and energy transduction in Na,K-ATPase. Biochim Biophys Acta.; 1505: 57-74.
  • Karin NJ, Kaprielian Z, Fambrough DM. (1989) Expression of avian Ca2+-ATPase in cultured mouse myogenic cells. Mol Cell Biol.; 9: 1978-86.
  • Karin NJ, Settle VJ. (1992) The sarcoplasmic reticulum Ca2+-ATPase SERCA1a contains endoplasmic reticulum targeting information. Biochem Biophys Res Commun.; 186: 219-27.
  • Kawakami K, Noguchi S, Noda M, Takahashi H, Ohta T, Kawamura M, Nojima H, Nagano K, Hirose T, Inayama S, et al. (1985) Primary structure of the a-subunit of Torpedo californica (Na++K+)ATPase deduced from cDNA sequence. Nature.; 316: 733-6.
  • Korczak B, Zarain-Herzberg A, Brandl CJ, Ingles CJ, Green NM, MacLennan DH. (1988) Structure of the rabbit fast-twitch skeletal muscle Ca2+-ATPase gene. J Biol Chem.; 263: 4813-9.
  • Kovacs T, Felfoldi F, Papp B, Paszty K, Bredoux R, Enyedi A, Enouf J. (2001) All three splice variants of the human sarco/endoplasmic reticulum Ca2+-ATPase gene are translated to proteins: a study of their co-expression in platelets and lymphoid cells. Biochem J.; 358: 559-68.
  • Lacapere J-J, Stokes DL, Olofsson A, Rigaud JL. (1998) Two dimensional crystallization of Ca2+-ATPase by detergent removal. Biophys J.; 75: 1319-29.
  • Lancaster CRD. (2002) A P-type ion pump at work. Nat Struct Biol.; 9: 643-5.
  • Lee AG, East M. (2001) What the structure of a calcium pump tells us about its mechanism? Biochem J.; 356: 665-83.
  • Lee AG. (2002) Ca2+-ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions. Biochim Biophys Acta.; 1565: 246-66.
  • Lytton J, MacLennan DH. (1988) Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem.; 263: 15024-31.
  • Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH. (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem.; 267: 14483-9.
  • Lytton J, Zarain-Herzberg A, Periasamy M, MacLennan DH. (1989) Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+ ATPase. J Biol Chem.; 264: 7059-65.
  • MacLennan DH. (2000) Ca2+ signalling and muscle disease. Eur J Biochem.; 267: 5291-7.
  • MacLennan DH, Brandl CJ, Champaneira S, Holland PC, Powers VE, Willard HF. (1987) Fast-twitch and slow-twitch/cardiac Ca2+ ATPase genes map to human chromosomes 16 and 12. Somat Cell Molec Genet.; 13: 341-6.
  • MacLennan DH, Brandl CJ, Korczak B, Green NM. (1985) Amino-acid sequence of a Ca2++ Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature.; 316: 696-700.
  • MacLennan DH, Green NM. (2000) Pumping ions. Nature.; 405: 633-4.
  • MacLennan DH, Rice WJ, Green MN. (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+ ATPases. J Biol Chem.; 272: 28815-8.
  • Magyar A, Bakos E, Varadi A. (1995) Structure and tissue-specific expression of the Drosophila melanogaster organellar type Ca2+-ATPase gene. Biochem J.; 310: 757-63.
  • Martonosi A. (1968) Sarcoplasmic reticulum V. The structure of sarcoplasmic reticulum membrane. Biochim Biophys Acta.; 150: 694-704.
  • Martonosi A. (1992) The Ca2+ transport ATPases of sarco(endo)plasmic reticulum and plasma membrane. In Molecular aspects of transport proteins. de Pont JJHHM. ed., pp 57-116. Amsterdam, Elsevier.
  • Martonosi AN. (1995) The structure and interactions of the Ca2+-ATPase. Biosci Rep.; 15: 263-81.
  • Martonosi A. (2000) The development of sarcoplasmic reticulum. Amsterdam, Harwood Academic Publ.
  • Martonosi A, Pikula S. (2003) The network of calcium regulation in muscle. Acta Biochim Polon.; 50: 1-29.
  • Martonosi AN, Taylor KA, Pikula S. (1991) The crystallization of the Ca2+-ATPase of sarcoplasmic reticulum. In Crystallization of membrane proteins. Michel H. ed., pp 167-82. Boca Raton, CRC Press.
  • McIntosh DB. (1998) The ATP binding sites of P-type ion transport ATPases: properties, structure, conformations, and mechanism of coupling. Adv Mol Cell Biol.; 23A: 33-99.
  • McIntosh DB. (1992) Glutaraldehyde cross-links Lys492 and Arg678 at the active site of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem.; 267: 22328-35.
  • McIntosh DB. (2000) Portrait of a P-type pump. Nat Struct Biol.; 7: 532-5.
  • McIntosh DB, Woolley DG. (1994) Catalysis of an ATP analogue untethered and tethered to Lysine 492 of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem.; 269: 21587-95.
  • McIntosh DB, Woolley DG, Berman MC. (1992) 2',3'-O(2,4,6-trinitrophenyl)-8-azidoAMP and -ATP photolabel Lys492 at the active site of sarcoplasmic reticulum Ca2+ ATPase. J Biol Chem.; 267: 5301-9.
  • Menguy T, Corre F, Bouneau L, Deschamps S, Moller JV, Champeil P, le Maire M, Falson P. (1998) The cytoplasmic loop located between transmembrane segments 6 and 7 controls activation by Ca2+ of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem.; 273: 20134-43.
  • Meszaros LG, Bak JZ. (1992) Simultaneous internalization and binding of calcium during the initial phase of calcium uptake by the sarcoplasmic reticulum Ca pump. Biochemistry.; 31: 1195-200.
  • Meszaros LG, Bak JZ. (1993) Coexistence of high-affinity and low-affinity Ca2+-binding sites of the sarcoplasmic reticulum calcium pump. Biochemistry.; 32: 10085-8.
  • Michel H. (1990) General and practical aspects of membrane protein crystallization. In Crystallization of membrane proteins. Michel H. ed., pp 73-88. Boca Raton, CRC Press.
  • Mintz E, Guillain F. (1997) Ca2+ transport by the sarcoplasmic reticulum ATPase. Biochim Biophys Acta.; 1318: 52-70.
  • Misra M, Taylor D, Oliver T, Taylor K. (1991) Effect of organic anions on the crystallization of the Ca2+-ATPase of muscle sarcoplasmic reticulum. Biochim Biophys Acta.; 1077: 107-18.
  • Mitchell RD, Palade P, Saito A, Fleischer S. (1988) Isolation of triads from skeletal muscle. Methods Enzymol.; 157: 51-68.
  • Moller JV, Juul B, leMaire M. (1996) Structural organization, ion transport and energy transduction of P type ATPases. Biochim Biophys Acta.; 1286: 1-51.
  • Molnar E, Varga S, Martonosi A. (1991) Differences in the susceptibility of various cation transport ATPases to vanadate catalysed photocleavage. Biochim Biophys Acta.; 1068: 17-26.
  • Moutin M-J, Cuillel M, Rapin C, Miras R, Anger M, Lompre AM, Dupont Y. (1994) Measurements of ATP binding on the large cytoplasmic loop of the sarcoplasmic reticulum Ca2+-ATPase overexpressed in Escherichia coli. J Biol Chem.; 269: 11147-54.
  • Moutin M-J, Rapin C, Miras R, Vincon M, Dupont Y, McIntosh DB. (1998) Autonomous folding of the recombinant large cytoplasmic loop of sarcoplasmic reticulum Ca2+ ATPase probed by affinity labeling and trypsin digestion. Eur J Biochem.; 251: 682-90.
  • Murakami K, Tanabe K, Takada S. (1990) Structure of plasmodium yoelii gene-encoded protein homologous to the Ca2+-ATPase of rabbit skeletal muscle sarcoplasmic reticulum. J Cell Sci.; 97: 487-95.
  • Myung J, Jencks WP. (1994) Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent. Biochemistry.; 33: 8775-85.
  • Myung J, Jencks WP. (1995) There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase. Biochemistry.; 34: 3077-83.
  • Newton T, Black JP, Butler J, Lee AG, Chad J, East JM. (2003) Sarco/endoplasmic-reticulum calcium ATPase SERCA1 is maintained in the endoplasmic reticulum by a retrieval signal located between residues 1 and 211. Biochem J.; 371: 775-82.
  • Ogawa H, Stokes DL, Sasabe H, Toyoshima C. (1998) Structure of the Ca2+-pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9 Å resolution. Biophys J.; 75: 41-52.
  • Ogawa H, Toyoshima C. (2002) Homology modelling of the cation binding sites of Na+,K+-ATPase. Proc Natl Acad Sci USA.; 99: 15977-82.
  • Ogurusu T, Wakabayashi S, Shigekawa M. (1991) Functional characterization of lanthanide binding sites in the sarcoplasmic reticulum Ca2+-ATPase: do lanthanide ions bind to the calcium transport site? Biochemistry.; 30: 9966-73.
  • Ohnoki S, Martonosi A. (1980) Structural differences bvetween Ca2+ transport ATPases isolated from sarcoplasmic reticulum of rabbit, chicken and lobster muscle. Comp Biochem Physiol B.; 65: 181-9.
  • Palmero I, Sastre L. (1989) Complementary DNA cloning of a protein highly homologous to mammalian sarcoplasmic reticulum Ca-ATPase from the crustacean Artemia. J Mol Biol.; 210: 737-48.
  • Papp S, Pikula S, Martonosi A. (1987) Fluorescence energy transfer as an indicator of Ca2+-ATPase interactions in sarcoplasmic reticulum. Biophys J.; 51: 205-20.
  • Pascolini D, Blasie JK. (1988) Moderate resolution profile structure of the sarcoplasmic reticulum membrane under low temperature conditions for the transient trapping of E1·P. Biophys J.; 54: 669-78.
  • Pascolini D, Herbette LG, Skita V, Asturias F, Scarpa A, Blasie JK. (1988). Changes in the sarcoplasmic reticulum membrane profile indeced by enzyme phosphorylation to E1·P at 16 Å resolution via time-resolved X-ray diffraction. Biophys J.; 54: 679-88.
  • Peachey LD, Franzini-Armstrong C. (1983) Structure and function of membrane systems of skeletal muscle cells. In Handbook of physiology, Section 10, Skeletal Muscle. Peachey LD, Adrian RH, eds, pp 23-71. Bethesda, American Physiological Society.
  • Peracchia C, Dux L, Martonosi A. (1984) Crystallization of intramembrane particles in rabbit sarcoplasmic reticulum vesicles by vanadate. J Muscle Res Cell Motil.; 5: 431-42.
  • Pick U. (1981) Interaction of fluorescein isothiocyanate with nucleotide binding sites of the Ca2+ ATPase from sarcoplasmic reticulum. Eur J Biochem.; 121: 187-195.
  • Pikula S, Mullner N, Dux L, Martonosi A. (1988) Stabilization and crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem.; 263: 5277-86.
  • Pikula S, Wrzosek A, Famulski KS. (1991) Long-term stabilization and crystallization of (Ca2++ Mg2+)-ATPase of detergent solubilized erythrocyte plasma membrane. Biochim Biophys Acta.; 1061: 206-14.
  • Rice WJ, Young HS, Martin DW, Sacks JR, Stokes DL. (2001) Structure of Na+,K+-ATPase at 11 Å resolutionn: comparison with Ca2+-ATPase in E1 and E2 states. Biophys J.; 80: 2187-97.
  • Sagara Y, Wade JB, Inesi G. (1992) A conformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum Ca2+-ATPase with thapsigargin. J Biol Chem.; 267: 1286-92.
  • Serpersu EH, Kirch U, Schoner W. (1982) Demonstration of a stable occluded form of Ca2+ by the use of the chromium complex of ATP in the Ca2+-ATPase of sarcoplasmic reticulum. Eur J Biochem.; 122: 347-54.
  • Shi D, Hsiung H-H, Pace RC, Stokes DL. (1995) Preparation and analysis of large, flat crystals of Ca2+-ATPase for electron crystallography. Biophys J.; 68: 1152-62.
  • Shi D, Lewis MR, Young HS, Stokes DL. (1998) Three dimensional crystals of Ca2+ ATPase from sarcoplasmic reticulum: merging electron diffraction tilt series and imaging the (h, k, o) projection. J Mol Biol.; 284: 1547-64.
  • Shull GE, Schwartz A, Lingrell JB. (1985) Amino-acid sequence of the catalytic subunit of the (Na++ K+)-ATPase deduced from a complementary DNA. Nature.; 316: 691-5.
  • Soulie S, Neumann JM, Berthomien C, Moller JV, le Maire M, Forge V. (1999) NMR conformational study of the sixth transmembrane segment of sarcoplasmic reticulum Ca2+-ATPase. Biochemistry.; 38: 5813-21.
  • Stokes DL, Green NM. (1990a) Structure of CaATPase: electron microscopy of frozen-hydrated crystals at 6 Å resolution in projection. J Mol Biol.; 213: 529-38.
  • Stokes DL, Green NM. (1990b) Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. Biophys J.; 57: 1-14.
  • Stokes DL, Green NM. (2000) Modeling a dehalogenase fold into the 8 Å density map for Ca2+-ATPase defines a new domain structure. Biophys J.; 78: 1765-76.
  • Stokes DL, Lacapere J-J. (1994) Conformation of Ca2+-ATPase in two crystal forms. Effects of Ca2+, thapsigargin, adenosine-5'(b,g methylene) triphosphate and chromium (III)-ATP on crystallization. J Biol Chem.; 269: 11606-13.
  • Sweadner KJ, Donnet C. (2001) Structural similarities of NaK-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem J.; 356: 685-704.
  • Taylor KA, Dux L, Martonosi A. (1984) Structure of the vanadate-induced crystals of sarcoplasmic reticulum Ca2+-ATPase. J Mol Biol.; 174: 193-204.
  • Taylor KA, Dux L, Martonosi A. (1986a) Three-dimensional reconstruction of negatively stained crystals of the Ca2+-ATPase from muscle sarcoplasmic reticulum. J Mol Biol.; 187: 417-27.
  • Taylor KA,. Dux L, Varga S, Ting-Beall HP, Martonosi A. (1988a) Analysis of two-dimensional crystals of Ca2+-ATPase in sarcoplasmic reticulum. Methods Enzymol.; 157: 271-289.
  • Taylor KA, Ho M-H, Martonosi A. (1986b) Image analysis of Ca2+-ATPase from sarcoplasmic reticulum. Ann NY Acad Sci.; 483: 31-43.
  • Taylor KA, Mullner N, Pikula S, Dux L, Peracchia C, Varga S, Martonosi A. (1988b) Electron microscope observations on Ca2+-ATPase microcrystals in detergent-solubilized sarcoplasmic reticulum. J Biol Chem.; 263: 5287-94.
  • Taylor KA, Varga S. (1994) Similarity of 3-dimensional microcrystals of detergent-solubilized (Na+,K+)-ATPase from pig kidney and Ca2+-ATPase from skeletal muscle sarcoplasmic reticulum. J Biol Chem.; 269: 10107-11.
  • Tillack TW, Boland R, Martonosi A. (1974) The ultrastructure of developing sarcoplasmic reticulum. J Biol Chem.; 249: 624-33.
  • Ting-Beall HP, Burgess FM, Dux L, Martonosi A. (1987) Electron microscopic analysis of two dimensional crystals of the Ca2+-transport ATPase - a freeze facture study. J Muscle Res Cell Motil.; 8: 252-9.
  • Tong SW. (1977) The acetylated NH2 terminus of Ca-ATPase from rabbit skeletal muscle sarcoplasmic reticulum: A common NH2 terminal acetylated methionyl sequence. Biochem Biophys Res Commun.; 74: 1242-8.
  • Tong SW. (1980) Studies on the structure of the calcium-dependent adenosine triphosphatase from rabbit skeletal muscle sarcoplasmic reticulum. Arch Biochem Biophys.; 203: 780-91.
  • Toyoshima C, Nomura H, Sugita Y. (2003) Crystal structures of Ca2+-ATPase in various physiological states. Ann N Y Acad Sci.; 986: 1-8.
  • Toyoshima C, Nakasake M, Nomura H, Ogawa H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature.; 405: 647-55.
  • Toyoshima C, Nomura H. (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature.; 418: 605-11.
  • Toyoshima C, Sasabe H, Stokes DL. (1993) Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature.; 362: 467-71.
  • Vanderkooi JM, Ierokomas A, Nakamura H, Martonosi. (1977) Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry.; 16: 1262-7.
  • Varga S. (1993) 3-dimensional (Type I) microcrystals of detergent-solubilized (Na+,K+)-ATPase enzyme from pig kidney. Acta Physiol Hung.; 81: 409-24.
  • Varga S. (1994) Three-dimensional (Type I) microcrystals of detergent-solubilized membrane-bound gastric (H+,K+)-ATPase enzyme from hog and rabbit stomachs. Acta Physiol Hung.; 82: 365-76.
  • Varga S, Csermely P, Martonosi A. (1985) The binding of vanadium (V) oligoanions to sarcoplasmic reticulum. Eur J Biochem.; 148: 119-26.
  • Varga S, Martonosi A. (1992) Giant sarcoplasmic reticulum vesicles: a study of membrane morphogenesis. J Muscle Res Cell Motil.; 13: 497-510.
  • Varga S, Szabolcs M. (1994) Further characterization of the 3-dimensional crystals of detergent-solubilized (Na+,K+)-ATPase from pig kidney. Acta Physiol Hung.; 82: 139-52.
  • Varga S, Taylor KA, Martonosi A. (1991) Effects of solutes on the formation of crystalline sheets of the Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. Biochim Biophys Acta.; 1070: 374-86.
  • Vegh M, Molnar E, Martonosi A. (1990) Vanadate catalysed, conformationnally specific photochemical cleavage of the Ca2+-ATPase of sarcoplasmic reticulum. Biochim Biophys Acta.; 1023: 168-183.
  • Verboomen H, Mertens L, Eggermont J, Wuytack F, Van Den Bosch L. (1995) Modulation of SERCA2 activity: regulated splicing and interaction with phospholamban. Biosci Rep.; 15: 307-15.
  • Vilsen B. (1995) Structure-function relationships in the Ca2+-ATPase of sarcoplasmic reticulum, studied by use of the substrate analogue CrATP and site directed mutagenesis comparison with Na+,K+-ATPase. Acta Physiol Scand.; 154:Suppl 624, 1-146.
  • Vilsen B, Andersen JP. (1992) Interdependence of Ca2+ occlusion sites in the unphosphorylated sarcoplasmic reticulum Ca2+-ATPase complex with CrATP. J Biol Chem.; 267: 3539-50.
  • Weber A. (1959) On the role of calcium in the activity of adenosine-5'-triphosphate hydrolysis by actomyosin. J Biol Chem.; 234: 2764-9.
  • Weber A, Herz R, Reiss I. (1964) The regulation of myofibrillar activity by calcium. Proc Roy Soc London Series B.; 160: 489-501.
  • Wu K-D, Lee W-F, Wey J, Bungard D, Lytton J. (1995) Localization and quantification of endoplasmic reticulum Ca2+-ATPase isoform transcripts. Am J Physiol.; 269: C775-C784.
  • Wuytack F, Dode L, Baba-Aissa F, Raeymaekers L. (1995) The SERCA3 type organellar Ca2+ pumps. Biosci Rep.; 15: 299-305.
  • Xu C, Rice WJ, He W, Stokes DL (2002) A structural model for the catalytic cycle of Ca2+-ATPase. J Mol Biol.; 316: 201-11.
  • Yamamoto H, Imamura Y, Tagaya M, Fukui T, Kawakita M. (1989) Ca2+-dependent conformational change of the ATP binding site of Ca2+ transporting ATPase of sarcoplasmic reticulum as revealed by an alteration of the target-site specificity of adenosinne triphosphopyridoxal. J Biochem.; 106: 1121-5.
  • Yonekura K, Stokes DL, Sasabe H, Toyoshima C. (1997) The ATP-binding site of Ca2+-ATPase revealed by electron image analysis. Biophys J.; 72: 997-1005.
  • Young HS, Jones LR, Stokes DL. (2001) Locating phospholamban in co-crystals with Ca2+-ATPase by cryoelectron microscopy. Biophys J.; 81: 884-94.
  • Yu M, Zhang L, Rishi AK, Khadeer M, Inesi G, Hussain A. (1998) Specific substitutions at amino acid 256 of the sarcoplasmic/endoplasmic reticulum Ca2+ transport ATPase mediate resistance to thapsigargin in thapsigargin-resistant hamster cells. J Biol Chem.; 273: 3542-6.
  • Yuul B, Juul B, Turc H, Durand ML, Gomez de Gracia A, Denoroy L, Moller JV, Champeil P, le Maire M. (1995) Do transmembrane segments in proteolyzed sarcoplasmic reticulum Ca2+-ATPase retain their functional Ca2+ binding properties after removal of cytoplasmic fragments by proteinase K. J Biol Chem.; 270: 20123-34.
  • Zhang Z, Lewis D, Sumbilla C, Inesi G and Toyoshima C. (2001) The role of the M6-M7 loop (L67) in stabilization of the phosphorylation and Ca2+ binding domains of the sarcoplasmic reticulum Ca2+-ATPase (SERCA). J Biol Chem.; 276: 15232-9.
  • Zhang P, Toyoshima C, Yonekura K, Green NM, Stokes DL. (1998) Structure of the calcium pump from sarcoplasmic reticulum at 8 Å resolution. Nature.; 392: 835-9.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.