Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 1 | 81-102
Article title

Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidases.

Title variants
Languages of publication
Sedolisins (serine-carboxyl peptidases) are proteolytic enzymes whose fold resembles that of subtilisin; however, they are considerably larger, with the mature catalytic domains containing approximately 375 amino acids. The defining features of these enzymes are a unique catalytic triad, Ser-Glu-Asp, as well as the presence of an aspartic acid residue in the oxyanion hole. High-resolution crystal structures have now been solved for sedolisin from Pseudomonas sp. 101, as well as for kumamolisin from a thermophilic bacterium, Bacillus novo sp. MN-32. The availability of these crystal structures enabled us to model the structure of mammalian CLN2, an enzyme which, when mutated in humans, leads to a fatal neurodegenerative disease. This review compares the structural and enzymatic properties of this newly defined MEROPS family of peptidases, S53, and introduces their new nomenclature.
Physical description
  • Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A.
  • Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A.
  • Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A.
  • Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
  • Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, U.S.A.
  • Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
  • Barrett AJ, Rawlings ND, Woessner JF. (1998) Handbook of proteolytic enzymes. Academic Press, London.
  • Benard M, Pallotta D, Pierron G. (1992) Structure and identity of a late-replicating and transcriptionally active gene. Exp Cell Res.; 201: 506-13.
  • Bullock TL, Breddam K, Remington SJ. (1996) Peptide aldehyde complexes with wheat serine carboxypeptidase II: implications for the catalytic mechanism and substrate specificity. J Mol Biol.; 255: 714-25.
  • Comellas-Bigler M, Fuentes-Prior P, Maskos K, Huber R, Oyama H, Uchida K, Dunn BM, Oda K, Bode W. (2002) The 1.4 Å crystal structure of kumamolysin: a thermostable serine-carboxyl-type proteinase. Structure (Camb).; 10: 865-76.
  • Davies DR. (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem.; 19: 189-215.
  • Delbaere LT, Brayer GD. (1985) The 1.8 Å structure of the complex between chymostatin and Streptomyces griseus protease A. A model for serine protease catalytic tetrahedral intermediates. J Mol Biol.; 183: 89-103.
  • Ghosh D, Weeks CM, Grochulski P, Duax WL, Erman M, Rimsay RL, Orr JC. (1991) Three-dimensional structure of holo 3-alpha, 20-beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family. Proc Natl Acad Sci U S A.; 88: 10064-8.
  • Holm L, Sander C. (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol.; 233: 123-38.
  • Ito M, Dunn BM, Oda K. (1996) Substrate specificities of pepstatin-insensitive carboxyl proteinases from gram-negative bacteria. J Biochem (Tokyo).; 120: 845-50.
  • Ito M, Narutaki S, Uchida K, Oda K. (1999) Identification of carboxyl residues in pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 that participate in catalysis and substrate binding. J Biochem (Tokyo).; 125: 210-6.
  • Katz ML, Johnson GS. (2001) Mouse gene knockout models for the CLN2 and CLN3 forms of ceroid lipofuscinosis. Eur J Paediatr Neurol.; 5 (Suppl A): 109-14.
  • Kraulis PJ. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr.; 24: 946-50.
  • Kuhn P, Knapp M, Soltis SM, Ganshaw G, Thoene M, Bott R. (1998) The 0.78 Å structure of a serine protease: Bacillus lentus subtilisin. Biochemistry.; 37: 13446-52.
  • Kwon HK, Kim H, Ahn TI. (1999) Pepstatin-insensitive carboxyl proteinase: a biochemical marker for late lysosomes in Amoeba proteus. Korean J Biol Sci.; 3: 221-8.
  • Lin L, Sohar I, Lackland H, Lobel P. (2001) The human CLN2 protein/tripeptidyl-peptidase I is a serine protease that autoactivates at acidic pH. J Biol Chem.; 276: 2249-55.
  • Matthews DA, Alden RA, Birktoft JJ, Freer ST, Kraut J. (1975) X-ray crystallographic study of boronic acid adducts with subtilisin BPN' (Novo) A model for the catalytic transition state. J Biol Chem.; 250: 7120-6.
  • Miller M, Rao JKM, Wlodawer A, Gribskov MR. (1993) A left-handed crossover involved in amidohydrolase catalysis. Crystal structure of Erwinia chrysanthemi L-asparaginase with bound L-aspartate. FEBS Lett.; 328: 275-9.
  • Murao S, Ohkuni K, Nagao M, Hirayama K, Fukuhara K, Oda K, Oyama H, Shin T. (1993) Purification and characterization of kumamolysin, a novel thermostable pepstatin-insensitive carboxyl proteinase from Bacillus novosp. MN-32. J Biol Chem.; 268: 349-55.
  • Narutaki S, Dunn BM, Oda K. (1999) Subsite preferences of pepstatin-insensitive carboxyl proteinases from bacteria. J Biochem (Tokyo).; 125: 75-81.
  • Nishii W, Ueki T, Miyashita R, Kojima M, Kim YT, Sasaki N, Murakami-Murofushi K, Takahashi K. (2003) Structural and enzymatic characterization of physarolisin (formerly physaropepsin) proves that it is a unique serine-carboxyl proteinase. Biochem Biophys Res Commun.; 301: 1023-9.
  • Oda K, Sugitani M, Fukuhara K, Murao S. (1987) Purification and properties of a pepstatin-insensitive carboxyl proteinase from a gram-negative bacterium. Biochim Biophys Acta.; 923: 463-9.
  • Oda K, Nakatani H, Dunn BM. (1992) Substrate specificity and kinetic properties of pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. No. 101. Biochim Biophys Acta.; 1120: 208-14.
  • Oda K, Takahashi T, Tokuda Y, Shibano Y, Takahashi S. (1994) Cloning, nucleotide sequence, and expression of an isovaleryl pepstatin-insensitive carboxyl proteinase gene from Pseudomonas sp. 101. J Biol Chem.; 269: 26518-24.
  • Oda K, Ogasawara S, Oyama H, Dunn BM. (2000) Subsite preferences of pepstatin-insensitive carboxyl proteinases from prokaryotes: kumamolysin, a thermostable pepstatin-insensitive carboxyl proteinase. J Biochem (Tokyo).; 128: 499-507.
  • Orry A, Wallace BA. (1999) A proposed model for the late-infantile neuronal ceroid lipofuscinosis (Batten Disease) protein CLN2. Protein Pept Lett.; 6: 1-5.
  • Oyama H, Abe S, Ushiyama S, Takahashi S, Oda K. (1999) Identification of catalytic residues of pepstatin-insensitive carboxyl proteinases from prokaryotes by site-directed mutagenesis. J Biol Chem.; 274: 27815-22.
  • Oyama H, Hamada T, Ogasawara S, Uchida K, Murao S, Beyer BB, Dunn BM, Oda K. (2002) A CLN2-related and thermostable serine-carboxyl proteinase, kumamolysin: cloning, expression, and identification of catalytic serine residue. J Biochem (Tokyo).; 131: 757-65.
  • Rawlings ND, Barrett AJ. (1999) Tripeptidyl- peptidase I is apparently the CLN2 protein absent in classical late-infantile neuronal ceroid lipofuscinosis. Biochim Biophys Acta.; 1429: 496-500.
  • Robertus JD, Kraut J, Alden RA, Birktoft JJ. (1972) Subtilisin; a stereochemical mechanism involving transition-state stabilization. Biochemistry.; 11: 4293-303.
  • Ruepp A, Grami W, Santos-Martinez M-L, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W. (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature. 407: 508-13.
  • Sack JS, Saper MA, Quiocho FA. (1989) Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J Mol Biol.; 206: 171-91.
  • Schechter I, Berger A. (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun.; 27: 157-62.
  • Shibata M, Dunn BM, Oda K. (1998) Substrate specificity of pepstatin-insensitive carboxyl proteinase from Bacillus coagulans J-4. J Biochem (Tokyo).; 124: 642-7.
  • Sleat DE, Donnelly RJ, Lackland H, Liu CG, Sohar I, Pullarkat RK, Lobel P. (1997) Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science.; 277: 1802-5.
  • Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science.; 253: 872-9.
  • Tsuruoka N, Nakayama T, Ashida M, Hemmi H, Nakao M, Minakata H, Oyama H, Oda K, Nishino T. (2003) Collagenolytic serine-carboxyl proteinase from Alicyclobacillus sendaiensis strain NTAP-1: Purification, characterization, gene cloning, and heterologous expression. Appl Environ Microbiol.; 69: 162-9.
  • Waterston RH et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature.; 420: 520-62.
  • Wlodawer A, Li M, Dauter Z, Gustchina A, Uchida K, Oyama H, Dunn BM, Oda K. (2001a) Carboxyl proteinase from Pseudomonas defines a novel faily of subtilisin-like enzymes. Nat Struct Biol.; 8: 442-6.
  • Wlodawer A, Li M, Gustchina A, Dauter Z, Uchida K, Oyama H, Goldfarb NE, Dunn BM, Oda K. (2001b) Inhibitor complexes of the Pseudomonas serine-carboxyl proteinase. Biochemistry.; 40: 15602-11.
  • Wright CS, Alden RA, Kraut J. (1969) Structure of subtilisin BPN' at 2.5 Å resolution. Nature.; 221: 235-42.
  • Wright CS, Alden RA, Kraut J. (1972) Crystal structure of a subtilisin BPN' complex with N-benzoyl-L-arginine. J Mol Biol.; 66: 283-9.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.