PL EN


Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 1 | 279-289
Article title

Fibrin D-dimer impairs the accumulation and anticoagulant properties of heparan sulphate and stimulates secretion of plasminogen activator inhibitor-1 by rabbit coronary endothelial cells.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Fibrin split product D-dimer (DD) is most probably involved in the development of vascular disorders. At 1.5 μM concentration DD inhibited the incorporation of D-[1-3H]glucosamine hydrochloride and [2-14C]acetate · Na into pericellular heparan sulphate (HS) of rabbit coronary endothelial cells without affecting other groups of glycosaminoglycans (GAGs). At the same time, DD reduced HS ability to bind antithrombin (AT) and suppressed NO production. The effect of DD on pericellular GAGs was similar to that of Nw-methyl-L-arginine, the competitive inhibitor of endothelial NO synthase (eNOS). L-Ascorbic acid, eNOS activator, increased the level of endogenous NO in the DD-treated cells, and restored HS accumulation and antithrombin binding. It is suggested that DD influence on endothelial HS may be mediated by NO production. Another effect of DD, namely, stimulation of plasminogen activator inhibitor-1 (PAI-1) secretion did not depend on the NO level. The decreased HS content, reduced anticoagulant properties of HS, and increased PAI-1 secretion disorganized the endothelial matrix, and promoted fibrin formation and vascular damage. This points to DD as an important factor in the development of vascular disorders.
Publisher

Year
Volume
50
Issue
1
Pages
279-289
Physical description
Dates
published
2003
received
2002-11-27
revised
2003-01-30
accepted
2003-02-24
Contributors
  • Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
  • Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
  • Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
  • Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
  • Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
  • Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
  • Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
  • Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
References
  • Amanuma K, Mitsui Y. (1991) Hyaluronic acid synthesis is absent in normal human endothelial cells irrespective of hyaluronic acid synthetase inhibitor activity but is significantly high in transformed cells. Biochim Biophys Acta.; 1092: 336-40.
  • Ames P, Ivannaccone L, Tomassino C, Brillante M, Cimino R, Brancaccio V. (1996) Coagulation activation and fibrinolytic imbalance in subjects with idiopatic antiphospholipid antibodies. Thromb Haemost.; 76: 190-4.
  • Ames P, Lupoli S, Alves J, Atsumi T, Edwards C, Iannaccone I, Khamashta M, Huges G, Brancaccio V. (1997) The coagulation/ fibrinolysis balance in systemic sclerosis: evidence for a haematological stress syndrome. Br J Rheumatol.; 36: 1045-50.
  • Andela VB, Schwarz EM, Puzas JE, O'Keefe RJ, Rosier RN. (2000) Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kB. Cancer Res.; 60: 6557-62.
  • Bernfield M. (1999) Functions of cell surface heparan sulphate proteoglycans. Ann Rev Biochem.; 68: 729-77.
  • van der Bom JG, Bots ML, Haverkate F, Meijer P, Hofman A, Kluft C, Grobbee DE. (2001) Activation products of the haemostatic system in coronary cerebrovascular and peripheral arterial disease. Thromb Haemost.; 85: 234-9.
  • Crook MF, Newby AC, Southgate KM. (2000) Expression of intercellular adhesion molecules in human saphenous veins: effects of inflammatory cytokines and neointima formation in culture. Atherosclerosis.; 150: 33-41.
  • Dawes KE, Gray AJ, Laurent GI. (1993) Thrombin stimulates fibroblast chemotaxis and replication. Eur J Cell Biol.; 61: 126-30.
  • van Det NF, van den Born J, Tamsma JT. (1996) Effects of high glucose on the production of heparan sulphate by mesangial and epithelial cells. Kidney Int.; 49: 1079-89.
  • Ding K, Jonsson M, Mani K, Sandgren S, Belting M, Fransson L-A. (2001) N-unsubstituted glucosamine in heparan sulfate of recycling glypican-1 from suramin- treated and nitrite-deprived endothelial cells. J Biol Chem.; 276: 3885-94.
  • Freedman JE, Fabian A, Loscazio J. (1995) Impaired EDRF production by endothelial cells exposed to fibrin monomer and FDP. Am J Physiol.; 268: C520-6.
  • Gallagher JT. (1997) Structure-activity relationship of heparan sulphate. Biochem Soc Trans.; 25: 1206-9.
  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannebaum SR. (1982) Analysis of nitrate nitrite and [15N]nitrate in biological fluids. Anal Biochem.; 126: 131-8.
  • Gruden G, Cavallo-Perin P, Romagnoli R, Olivetti C, Frezet D, Pagano G. (1993) Prothrombin fragment 1+2 and antithrombin III-thrombin complex in microalbuminuric type II diabetic patients. Diabet Med.; 11: 485-8.
  • Harley SL, Powell JT. (1999) Fibrinogen up-regulates the expression of monocyte chemoattractant protein 1 in human saphenous vein endothelial cells. Biochem J.; 341: 739-44.
  • Herrick S, Blanc-Brude O, Gray A, Laurent G. (1999) Fibrinogen. Int J Biochem Cell Biol.; 31: 741-67.
  • Huang A, Vita JA, Venema RC, Keaney JF. (2000) Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem.; 275: 17399-406.
  • Irokawa M, Nishinaga M, Ikeda U, Shinoda Y, Suematsu M, Gouda N, Ishimura Y, Shimada K. (1997) Endothelial-derived nitric oxide preserves anticoagulant heparan sulphate expression in cultured porcine aortic endothelial cells. Atherosclerosis.; 135: 9-17.
  • Kennedy A, Frank RN, Mancini MA. (1986) In vitro production of glycosaminoglycans by retinal microvessel cells and lens epithelium. Invest Ophthalmol Vis Sci.; 27: 746-54.
  • Kovensky J, Sassetti B, Cirelli F, Kordich A. (1990) Low anticoagulant activity of high sulphated heparan sulphates. Thromb Haemost.; 63: 488-92.
  • Kurose I, Wolf R, Grisham MB, Aw TY, Specian RD, Granger DN. (1995) Microvascular responses to inhibition of nitric oxide production. Role of active oxidants. Circ Res.; 76: 30-9.
  • Lindahl U, Backstrom G, Jansson L, Hallen A. (1973) Biosynthesis of heparin II. Formation of sulfamino groups. J Biol Chem.; 248: 7234-41.
  • Marder VJ, Budzynski AZ, Barlow GH. (1976) Comparison of the physicochemical properties of fragment D derivatives of fibrinogen and fragment D-D of cross-linked fibrin. Biochim Biophys Acta.; 427: 1-14.
  • Menashi S, Lu H, Soria C, Legrand Y. (1993) Endothelial cell proteases: physiological role and regulation. Baillieres Clin Haematol.; 6: 559-76.
  • Mertens G, Cassiman J-J, van den Berghe H, Vermylen J, David G. (1992) Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties. J Biol Chem.; 267: 20435-43.
  • Miller SJ, Hoggat AM, Faulk WP. (1998) Heparin regulates ICAM-1 expression in human endothelial cells: an example of non-cytokine-mediated endothelial activation. Thromb Haemost.; 80: 481-7.
  • Moseley R, Waddington R, Evans P, Hallwell B, Embery G. (1995) The chemical modification of glycosaminoglycan structure by oxygen-derived species in vitro. Biochim Biophys Acta.; 1244: 245-2.
  • Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, Isner M. (1998) Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol.; 19: 1156-61.
  • Niu XF, Ibbotson G, Kubes P. (1996) A balance between nitric oxide and oxidants regulates mast cell-dependent neutrophil-endothelial cell interaction. Circ Res.; 79: 992-9.
  • Okasora T, Takikawa T, Utsunomiya Y, Senoh I, Hayashibara H, Shiraki K, Kasagi T, Shimizu F. (1992) Suppressive effect of superoxide dismutase on adriamycin nephropathy. Nephron.; 60: 199-203.
  • Olman MA, Hagood JS, Simmons WL, Fuller GM, Vinson C, White KE. (1999) Fibrin fragment induction of plasminogen activator inhibitor transcription is mediated by activator protein-1 through a highly conserved element. Blood.; 94: 2029-38.
  • Prydz K, Dalen KT. (2000) Synthesis and sorting of proteoglycans. J Cell Sci.; 113: 193-205.
  • Senior RM, Skogen WF, Griffin GL. (1986) Effects of fibrinogen derivatives upon the inflammatory response. J Clin Invest.; 77: 1014-9.
  • Shivley JE, Conrad HE. (1976) Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry.; 15: 3932-42.
  • Swiatkowska M, Cierniewska-Cieslak A, Pawlowska Z, Cierniewski CS. (2000) Dual regulatory effect of nitric oxide on PAI-1 expression in endothelial cells. Eur J Biochem.; 267: 1001-7.
  • True AL, Rahman A, Malik AB. (2000) Activation of NF-kappaB induced by H2O2 and TNF-alpha and its effects on ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol.; 279: L302-11.
  • Vilar LE, Ghael D, Li M, Bhagat DD, Arrigo LM, Cowman MK, Dweck HS, Rosenfeld L. (1997) Nitric oxide degradation of heparin and heparan sulphate. Biochem J.; 324: 473-9.
  • Vlodavsky I, Friedman Y. (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest.; 108: 341-7.
  • Yevdokimova N Yu, Yefimov AS. (2001) Effects of wheat germ agglutinin and concanavalin A on the accumulation of glycosaminoglycans in pericellular matrix of human dermal fibroblasts. A comparison with insulin. Acta Biochim Polon.; 48: 563-72.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv50i1p279kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.