Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 1 | 1-30
Article title

The network of calcium regulation in muscle.

Title variants
Languages of publication
In this review the molecular characteristics and reaction mechanisms of different Ca2+ transport systems associated with various membranes in muscle cells will be summarized. The following topics will be discussed in detail: a brief history of early observations concerning maintenance and regulation of cellular Ca2+ homeostasis, characterization of the Ca2+ pumps residing in plasma membranes and sarco(endo)plasmic reticulum, mitochondrial Ca2+ transport, Ca2+-binding proteins, coordinated expression of Ca2+ transport systems, a general background of muscle excitation-contraction coupling with emphasis to the calcium release channels of plasma membrane and sarcoplasmic reticulum, the structure and function of dihydropyridine and ryanodine receptors of skeletal and cardiac muscles, and finally their disposition in various types of muscles.
Physical description
  • State University of New York, Upstate Medical University, College of Graduate Studies, Syracuse, New York,, U.S.A
  • M. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
  • Adachi-Akahane S, Lu L, Li Z, Frank JS, Philipson KD, Morad M. (1997) Calcium signaling in transgenic mice overexpressing cardiac Na+-Ca2+ exchanger. J Gen Physiol.; 109: 717-29.
  • Adams BA, Tanabe T, Mikami A, Numa S, Beam KG. (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature.; 346: 569-72.
  • Allen DL, Leinwand LA. (2002) Intracellular calcium and myosin isoform transitions. J Biol Chem.; 277: 45323-30.
  • Armstrong CM, Bezanilla FM, Horowicz P. (1972) Twitches in the presence of ethylene glycol bis (beta-aminoethyl ether)-N,N'-tetraacetic acid. Biochim Biophys Acta.; 267: 605-8.
  • Ashley CC, Griffiths PJ, Lea TJ, Mulligan IP, Palmer RE, Simnett SJ. (1993) Barnacle muscle: Ca2+, activation and mechanics. Rev Physiol Biochem Pharmacol.; 122: 149-258.
  • Babcock DF, Hille B. (1998) Mitochondrial oversight of cellular Ca2+ signalling. Curr Opin Neurobiol.; 8: 398-404.
  • Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marban E, Periasamy M. (1998) Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse heart. Circ Res.; 83: 1205-14.
  • Balke CW, Egan TM, Wier WG. (1994) Processes that remove calcium from the cytoplasm during excitation-contraction coupling in intact rat heart cells. J. Physiol.; 474: 447-62.
  • Barrientos G, Hidalgo C. (2002) Annexin VI is attached to transverse-tubule membranes in isolated skeletal muscle triads. J Membr Biol.; 188: 163-73.
  • Bassani JWM, Bassani RA, Bers DM. (1994) Relaxation in rabbit and rat cardiac cells: species dependent differences in cellular mechanisms. J Physiol.; 476: 279-93.
  • Baylor SM, Chandler WK, Marshall MW. (1983) Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients. J Physiol.; 344: 625-66.
  • Benders AAGM, Wevers RA, Veerkamp JH (1996) Ion transport in human skeletal muscle cell: disturbances in myotonic dystrophy and Brody's diseases. Acta Physiol Scand.; 156: 355-67.
  • Bernardi P. (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev.; 79: 1127-55.
  • Berridge MJ, Bootman MD, Lipp P. (1998) Calcium: a life and death signal. Nature.; 395: 645-8.
  • Berridge MJ. (2001) The versatility and complexity of calcium signaling. In Complexity in biological information processing. Novartis Foundation Symposium 239, pp 52-67. John Wiley and Sons.
  • Bers DM, Bassani JWM, Bassani RA. (1993) Competition and redistribution among calcium transport systems in rabbit cardiac myocytes. Cardiovasc Res.; 27: 1772-7.
  • Bers DM. (2002) Cardiac excitation-contraction coupling. Nature.; 415: 198-205.
  • Bezanilla F. (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev.; 80: 555-92.
  • Bianchi CP, Shanes AM. (1959) Calcium influx in skeletal muscle at rest, during activity and during potassium contracture. J Gen Physiol.; 42: 803-15.
  • Blaustein MP, Lederer WJ. (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev.; 79: 763-854.
  • Bluhm WF, Meyer M, Sayen MR, Swanson EA, Dillmann WH. (1999) Overexpression of sarcoplasmic reticulum Ca2+-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res.; 43: 382-8.
  • Booth FW, Thomason DB. (1991) Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev.; 71: 541-85.
  • Bootman MD, Lipp P, Berridge MJ. (2001) The organization and functions of local Ca2+ signals. J Cell Science.; 114: 2213-22.
  • Bootman MD, Berridge MJ, Roderick HL. (2002) Calcium signaling: more messengers, more channels, more complexity. Curr Biol.; 12: R563-5.
  • Brandt NR, Caswell AH, Wen S-R, Talvenheimo JA. (1990) Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads. J Membr Biol.; 113: 237-51.
  • Brandt NR, Franklin G, Brunschwig J-P, Caswell AH. (2001) The role of mitsugumin 29 in transverse tubules of rabbit skeletal muscle. Arch Biochem Biophys.; 385: 406-9.
  • Brini M, Carafoli E. (2000) Calcium signalling: a historical account, recent developments and future perspectives. Cell Mol Life Sci.; 57: 354-70.
  • Brini M, Bano D, Manni S, Rizzuto R, Carafoli E. (2000) Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca2+ signalling. EMBO J.; 19: 4926-35.
  • Brittsan AG, Kranias EG. (2000) Phospholamban and cardiac contractile function. J Mol Cell Cardiol.; 32: 2131-5.
  • Brody IA. (1969) Muscle contracture induced by exercise. A syndrome attributable to decreased relaxing factor. N Engl J Med.; 281: 187-92.
  • Buntinas L, Gunter KK, Sparagna GC, Gunter TE. (2001) The rapid mode of calcium uptake into heart mitochondria (RAM): comparison to RAM in liver mitochondria. Biochim Biophys Acta.; 1504: 248-61.
  • Callen DF, Lane SA, Kozman H, Kremmidiotis G, Whitmore SA, Lowenstein M, Doggett NA, Kenmochi N, Page DC, Maglott DR, Nierman WC, Murakawa K, Berry R, Sikela JM, Houlgatte RA, Uffray C, Sutherland GR. (1995) Integration of transcript and genetic maps of chromosome 16 at near -1-Mb resolution: demonstration of a hot spot for recombination at 16p12. Genomics.; 29: 503-11.
  • Campbell AK. (1983) Intracellular calcium: its universal role as regulator. John Wiley & Sons, Chichester.
  • Cannell MB, Cheng H, Lederer WJ. (1995) The control of calcium release in heart muscle. Science.; 268: 1045-9.
  • Carafoli E, Klee C. eds. (1999) Calcium as a cellular regulator. Oxford University Press, New York.
  • Carafoli E, Genazzani A, Guerini D. (1999) Calcium controls the transcription of its own transporters and channels in developing neurons. Biochem Biophys Res Commun.; 266: 624-32.
  • Carafoli E, Santella L, Branca K, Brini M. (2001) Generation, control and processing of cellular calcium signals. Crit Rev Biochem Mol Biol.; 36: 107-260.
  • Caswell AH, Brandt NR. (1989) Triadic proteins of skeletal muscle. J Bioenerg Biomembr.; 21: 149-62.
  • Catterall WA. (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol.; 16: 521-55.
  • Cavagna M, O'Donnell JM, Sumbilla C, Inesi G, Klein MG. (2000) Exogenous Ca2+-ATPase isoform effects on Ca2+ transients of embryonic chicken and neonatal rat cardiac myocytes. J Physiol.; 528: 53-63.
  • Chaudhari N. (1995) Muscular dysgenesis. The role of calcium channels in muscle development. In Ion channels and genetic diseases. Soc Gen Physiol Series, vol 50, Dawson DC, Frizzel RA. eds, pp 115-24. Rockefeller University Press, New York.
  • Chevet E, Jakob CA, Thomas DY, Bergeron JJ. (1999) Calnexin family members as modulators of genetic diseases. Semin Cell Dev Biol.; 10: 473-80.
  • Choi HS, Eisner DA. (1999) The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in ventricular myocytes. J Physiol.; 515: 109-18.
  • Co DA, Matlib MA. (1993) A role for the mitochondrial Na+-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J Biol Chem.; 268: 938-47.
  • Corbett EF, Michalak M. (2000) Calcium, a signaling molecule in the endoplasmic reticulum. Trends Biochem Sci.; 25: 307-11.
  • de Meis L, ed. (1995) Ca transport: pumps and channels. Biosci Rep.; 15: 241-408.
  • Del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW, Gwathmey JK, Rosenzweig A, Hajjar RJ. (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation.; 100: 2308-11.
  • Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P. (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem.; 276: 2571-5.
  • Diaz-Munoz M, Hamilton SL, Kaetzel MA, Hazarika P, Dedman JR. (1990) Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J Biol Chem.; 265: 15894-9.
  • Dode L, Wuytack F, Kools PF, Baba-Aissa F, Raeymaekers L, Brike F, van de Ven WJ, Casteels R, Brik F. (1996) cDNA cloning, expression and chromosomal localization of the human sarco/endoplasmic reticulum Ca2+ ATPase 3 gene. Biochem J.; 318: 689-99.
  • Duchen MR. (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol.; 529: 57-68.
  • Ebashi S. (1961) Calcium binding activity of vesicular relaxing factor. J Biochem.; 50: 236-44.
  • Ebashi S. (1963) Third component participating in the superprecipitation of natural actomyosin. Nature.; 200: 1010.
  • Ebashi S, Endo M, Ohtsuki I. (1999) Calcium in muscle contraction. In Calcium as a cellular regulator. Carafoli E, Klee C. eds, pp 579-95. Oxford University Press, New York.
  • Fabiato A. (1989) Appraisal of the physiological relevance of two hypotheses for the mechanism of calcium release from the mammalian cardiac sarcoplasmic reticulum: calcium-induced release versus charge coupled release. Mol Cell Biochem.; 89: 135-40.
  • Farah CS, Reinach FC. (1995) The troponin complex and regulation of muscle contraction. FASEB J.; 9: 755-67.
  • Ferri KF, Kroemer G. (2001) Mitochondria - the suicide organelles. BioEssays.; 23: 111-5.
  • Franzini-Armstrong C. (1999) The sarcoplasmic reticulum and the control of muscle contraction. FASEB J.; 13 (Suppl): S266-70.
  • Franzini-Armstrong C, Protasi F. (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev.; 77: 699-729.
  • Franzini-Armstrong C, Protasi F, Ramesh V. (1998) Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Ann NY Acad Sci.; 853: 20-30.
  • Froemming GR, Pette D, Ohlendieck K. (1999) The 90-kDa junctional sarcoplasmic reticulum protein forms an integral part of a supramolecular triad complex in skeletal muscle. Biochem Biophys Res Commun.; 261: 603-9.
  • Gordon AM, Homsher E, Regnier M. (2000) Regulation of contraction in striated muscle. Physiol Rev.; 80: 853-924.
  • Greene AL, Lalli MJ, Ji Y, Babu GJ, Grupp I, Sussman M, Periasamy M. (2000) Overexpression of SERCA2b in the heart leads to an increase in sarcoplasmic reticulum calcium transport function and increased cardiac contractility. J Biol Chem.; 275: 24722-7.
  • Guerini D, Schroder S, Foletti D, Carafoli E. (1995) Isolation and characterization of a stable Chinese hamster ovary cell line overexpressing the plasma membrane Ca2+ ATPase. J Biol Chem.; 270: 14643-50.
  • Guerini D, Carafoli E. (1999) The calcium pumps. In Calcium as a cellular regulator. Carafoli E, Klee C. eds, pp 249-78. Oxford University Press, New York.
  • Hajnoczky G, Csordas G, Madesh M, Pacher P. (2000) The machinery of local Ca2+ signalling between sarcoendoplasmic reticulum and mitochondria. J Physiol.; 529: 69-81.
  • Hammes A, Oberdorf-Maass S, Jenatschke S, Pelzer T, Maass A, Gollnick F, Meyer R, Afflerbach J, Neyses L. (1996) Expression of the plasma membrane Ca2+-ATPase in myogenic cells. J Biol Chem.; 271: 30816-22.
  • Hammes A, Oberdorf-Maass S, Rother T, Nething K, Gollnick F, Linz KW, Meyer R, Hu K, Han H, Gaudron P, Ertl G, Hoffmann S, Ganten U, Vetter R, Schuh K, Benkwitz C, Zimmer HG, Neyses L. (1998) Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res.; 83: 877-88.
  • Hasselbach W, Makinose M. (1961) Die calciumpumpe der Erschlaffungsgrana desmuskels und ihre abhangigkeit von der ATP-spaltung. Biochem Z.; 333: 518-28.
  • He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH. (1997) Overexpression of the rat sarcoplasmic reticulum Ca2+-ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest.; 100: 380-9.
  • Heilbrunn LV, Wiercinsky FJ. (1947) Action of various cations on muscle protoplasm. J Cell Comp Physiol.; 19: 15-32.
  • Heiny JA. (2001) Excitation-contraction coupling in skeletal muscle. In Cell physiology sourcebook. A molecular approach, 3d edn. Sperelakis N. ed, pp 911-26. Academic Press, San Diego.
  • Hidalgo C, Donoso P. (1995) Luminal calcium regulation of calcium release from sarcoplasmic reticulum. Biosci. Rep.; 15: 387-97.
  • Hofmann F, Lacinova L, Klugbauer N. (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol.; 139: 33-87.
  • Hollingworth S, Zhao M, Baylor SM. (1996) The amplitude and time course of the myoplasmic free Ca2+ transient in fast-twitch fibers of mouse muscle. J Gen Physiol.; 108: 455-69.
  • Holmes KC, Geeves MA. (2000) The structural basis of muscle contraction. Philos Trans R Soc Lond B Biol Sci.; 355: 419-31.
  • Huley HE. (2000) Past, present and future experiments on muscle. Philos Trans R Soc Lond B Biol Sci.; 355: 539-43.
  • Jacobsen NJ, Lyons I, Hoogendoorn B, Burge S, Kwok PY, O'Donovan MC, Craddock N, Owen MJ. (1999) ATP2A2 mutations in Darier's disease and their relationship to neuropshychiatric phenotypes. Hum Mol Genet.; 8: 1631-6.
  • Ji Y, Lalli MJ, Babu GJ, Xu Y, Kirkpatrick DL, Liu LH, Chiamvimonvat N, Walsh RA, Shull GE, Periasamy M. (2000) Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. J Biol Chem.; 275: 38073-80.
  • Jorgensen AO, Shen A C-Y, Arnold W, McPherson PS, Campbell KP. (1993) The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. J Cell Biol.; 120: 969-80.
  • Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R. (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term priming. Proc Natl Acad Sci USA.; 96: 13807-12.
  • Kamada T, Kinoshita H. (1943) Disturbances initiated from the naked surface of muscle protoplasm. Jap J Zool.; 10: 469-93.
  • Kao J, Fortner CN, Liu LH, Shull GE, Paul RJ. (1999) Ablation of the SERCA3 gene alters epithelium dependent relaxation in mouse tracheal smooth muscle. Am J Physiol.; 277: L264-70.
  • Kaplan JJ. (2002) Biochemistry of Na+,K+- ATPase. Annu Rev Biochem.; 71: 511-35.
  • Kawasaki H, Kretsinger RH. (1994) Calcium binding proteins 1: EF-hands. Protein Profile.; 1: 343-517.
  • Kirby MS, Sagara Y, Gaa S, Inesi G, Lederer WJ, Rogers TB. (1992) Thapsigargin inhibits contraction and Ca2+transient in cardiac cells by specific inhibition of the sarcoplasmic reticulum Ca2+ pump. J Biol Chem.; 267: 12545-51.
  • Kirchhefer U, Neumann J, Baba HA, Begrow F, Kobayashi YM, Reinke U, Schmitz W, Jones LR. (2001) Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1. J Biol Chem.; 276: 4142-49.
  • Kiriazis H, Kranias EG. (2000) Genetically engineered models with alterations in cardiac membrane calcium-handling proteins. Annu Rev Physiol.; 62: 321-51.
  • Kobayashi YM, Alseikhan BA, Jones LR. (2000) Localization and characterization of the calsequestrin binding domain of triadin. 1. Evidence for a charged beta-strand in mediating protein-protein interaction. J Biol Chem.; 275: 17639-46.
  • Kunz WS. (2001) Control of oxidative phosphorylation in skeletal muscle. Biochim Biophys Acta.; 1504: 12-9.
  • Lee AG. (2002) Ca2+-ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions. Biochim Biophys Acta.; 1565: 246-66.
  • Leong P, MacLennan DH. (1998) The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to a contiguous site in the skeletal muscle ryanodine receptor. J Biol Chem.; 273: 29958-64.
  • Liu B-F, Xu X, Fridman R, Muallem S, Kuo TH. (1996) Consequences of functional expression of the plasma membrane Ca2+ pump isoform 1a. J Biol Chem.; 271: 5536-44.
  • Liu LH, Paul RJ, Sutliff RL, Miller ML, Lorenz JN, Pun RY, Duffy JJ, Doetschman T, Kimura Y, MacLennan DH, Hoying JB, Shull GE. (1997) Defective endothelium-dependent relaxation of vascular smooth muscle and endothelial cell Ca2+ signaling in mice lacking sarco(endo)plasmic reticulum Ca2+-ATPase isoform 3. J Biol Chem.; 272: 30538-45.
  • Liu Z, Zhang I, Sharma MR, Li P, Chen SR, Wagenknecht T. (2001) Three-dimensional reconstruction of the recombinant type 3 ryanodine receptor and localization of its amino terminus. Proc Natl Acad Sci U S A.; 98: 6104-9.
  • Loukianov E, Ji Y, Grupp IL, Kirkpatrick DL, Baker DL, Loukianova T, Grupp G, Lytton J, Walsh RA, Periasamy M. (1998) Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ Res.; 83: 889-97.
  • Lytton J, Zarain-Herzberg A, Periasamy M, MacLennan DH. (1989) Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem.; 264: 7059-65.
  • MacLennan DH. (2000) Ca2+ signalling and muscle disease. Eur J Biochem.; 267: 5291-97.
  • MacLennan DH, Toyofuku T, Lytton J. (1992) Structure-function relationships in sarcoplasmic reticulum type Ca2+ pumps. Ann NY Acad Sci.; 671: 1-10.
  • MacLennan DH, Rice WJ, Green MN. (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem.; 272: 28815-8.
  • MacLennan DH, Abu-Abed M, Kang C-H. (2002) Structure function relationships in Ca cycling proteins. J Mol Cell Cardiol.; 34: 897-918.
  • Mar SO, Marks AR. (2000) Ryanodine receptors. In Calcium signalling. Putney JW Jr. ed, pp 227-47. Boca Raton, CRC Press.
  • Martonosi AN. (2000) The development of sarcoplasmic reticulum. Harwood Academic Publ., Amsterdam.
  • Marty I, Thevenon D, Scotto C, Groh S, Sainnier S, Robert M, Grunwald D, Villaz M. (2000) Cloning and characterization of a new isoform of skeletal muscle triadin. J Biol Chem.; 275: 8206-12.
  • Mazzanti M, Bustamante JO, Oberleithner H. (2001) Electrical dimension of the nuclear envelope. Physiol Rev.; 81: 1-19.
  • McCormack JG, Denton RM. (1999) Calcium in the regulation of intramitochondrial enzymes. In Calcium as a cellular regulator. Carafoli E, Klee C. eds, pp 529-44. Oxford University Press, New York.
  • Meissner G. (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol.; 56: 485-508.
  • Meissner G. (2001) Ca2+ release from sarcoplasmic reticulum in muscle. In Cell physiology sourcebook. A molecular approach, 3d edn. Sperelakis N. ed, pp 927-40. Academic Press, San Diego.
  • Mellstrom B, Naranjo JR. (2001) Mechanisms of Ca2+-dependent transcription. Curr Opin Neurobiol.; 11: 312-9.
  • Michalak M, ed. (1996) Calreticulin., RG Landes and Co., Austin.
  • Mickelson JR, Louis CF. (1996) Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev.; 76: 537-92.
  • Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S. (1989) Primary structure and functional expression of the cardiac dihydropyridine- sensitive calcium channel. Nature.; 340: 230-3.
  • Milner RE, Famulski KS, Michalak M. (1992) Calcium binding proteins in the sarcoplasmic /endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell Biochem.; 112: 1-13.
  • Miyamoto M, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ. (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A.; 97: 793-8.
  • Moller JV, Juul B, le Maire M. (1996) Structural organization, ion transport and energy transduction of P-type ATPases. Biochim Biophys Acta.; 1286: 1-51.
  • Nakai J, Imagawa T, Hakamata Y, Shigekawa M, Takeshima H, Numa S. (1990) Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS Lett.; 271: 169-77.
  • Newton T, Black JP, Butler J, Lee AG, Chad JE, East JM. (2003) The calcium pump SERCA1 is maintained in the endoplasmic reticulum by a retrieval signal located between residues 1-211. Biochem J.; in press.
  • Niggli E. (1999) Localized intracellular calcium signalling in muscle: calcium sparks and calcium quarks. Annu Rev Physiol.; 61: 311-35.
  • Niki I, Yokokura H, Sudo T, Kato M, Hidaka H. (1996) Ca2+ signaling and intracellular Ca2+ binding proteins. J Biochem.; 120: 685-98.
  • Odermatt A, Barton K, Khanna VK, Mathieu J, Escolar D, Kuntzer T, Karpati G, MacLennan DH. (2000) The mutation of Pro789 to Leu reduces the activity of the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1) and is associated with Brody disease. Hum Genet.; 106: 482-91.
  • Ogawa Y, Kurebayashi N, Murayama T. (2000) Putative roles of type 3 ryanodine receptor isoforms (RyR3). Trends Cardiovasc Med.; 10: 65-70.
  • Ogawa Y, Murayama T, Kurebayashi N. (2002) Ryanodine receptor isoforms of non-mammalian skeletal muscle. Front Biosci.; 7: d1184-94.
  • Ojuka EO, Jones TE, Han DH, Chen M, Wamhoff BR, Sturek M, Holloszy JO. (2002) Intermittent increases in cytosolic Ca2+ stimulate mitochondrial biogenesis in muscle cells. Am J Physiol Endocrinol Metab.; 283: E1040-5.
  • Orlova EV, Serysheva II, Van Heel M, Hamilton SL, Chiu W. (1996) Two structural configurations of the skeletal muscle calcium release channel. Nat Struct Biol.; 3: 547-52.
  • Orr I, Shoshan-Barmatz V. (1996) Modulation of the skeletal muscle ryanodine receptor by endogenous phosphorylation of 150/160 kDa proteins of the sarcoplasmic reticulum. Biochim Biophys Acta.; 1283: 80-8.
  • Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH. (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem.; 265: 13472-83.
  • Otsu K, Fujii J, Periasamy M, Difilippantonio M, Uppender M, Ward DC, MacLennan DH. (1993) Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum genes. Genomics.; 17: 507-9.
  • Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN, Shull GE. (1999) Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem.; 274: 2556-62.
  • Periasamy M, Huke S. (2001) SERCA pump level is a critical determinant of Ca2+ homeostasis and cardiac contractility. J Mol Cell Cardiol.; 33: 1053-63.
  • Pette D. (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol.; 90: 1119-24.
  • Philipson KD, Nicoll DA. (2000) Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol.; 62: 111-33.
  • Protasi F, Takekura H, Wang Y, Chen SR, Meissner G, Allen PD, Franzini-Armstrong C. (2000) RyR1 and RyR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J.; 79: 2494-508.
  • Putney JW Jr, ed. (2000) Calcium signalling. CRC Press, Boca Raton.
  • Reed LJ, Damuni Z, Merryfield ML. (1985) Regulation of mammalian pyruvate and branched-chain-keto acid dehydrogenase complexes by phosphorylation dephosphorylation. Curr Top Cell Regul.; 27: 41-9.
  • Reed TD, Babu G, Ji Y, Zilberman A, Ver Heyen M, Wuytack F, Periasamy M. (2000) The expression of SR calcium transport ATPase and the Na+/Ca2+ exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J Mol Cell Cardiol.; 32: 453-64.
  • Ringer S. (1883) A further contribution regarding the influence of the blood on the contraction of the heart. J Physiol.; 4: 29-42.
  • Rios E, Pizarro G. (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev.; 71: 849-908.
  • Rios E, Stern MD. (1997) Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena. Annu Rev Biophys Biomol Struct.; 26: 47-82.
  • Rizzuto R, Bernardi P, Pozzan T. (2000) Mitochondria as all-around players of the calcium-game. J Physiol.; 529: 37-47.
  • Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T. (2001) Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J.; 20: 4998-5007.
  • Samso M, Wagenknecht T. (2002) Apocalmodulin and Ca2+-calmodulin bind to neighboring locations on the ryanodine receptor. J Biol Chem.; 277: 1349-53.
  • Santella L. (1996) The cell nucleus: an Eldorado to future calcium research? J Membr Biol.; 153: 83-92.
  • Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M, Sahlin K, Kay L, Appaix F, Braun U, Eimre M, Saks VA. (2001) Functional complexes of mitochondria with Ca2+,Mg2+-ATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta.; 1504: 379-95.
  • Sharma MR, Penczek P, Grassucci R, Xin HB, Fleischer S, Wagenknecht T. (1998) Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J Biol Chem.; 273: 18429-34.
  • Shull GE. (2000) Gene knockout studies of Ca2+ transporting ATPases. Eur J Biochem.; 267: 5284-90.
  • Skou JC. (1985) Sodium-potassium pump. In Membrane transport. People and ideas. Tosteson DC ed, pp 155-185. American Physiological Society, Bethesda.
  • Somlyo AV, Gonzalez-Serratos H, Shuman H, McClellan G, Somlyo AP. (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study. J Cell Biol.; 90: 577-94.
  • Somlyo AV, Bond M, Shuman H, Somlyo AP. (1986) Electron-probe-Xray microanalysis of in situ calcium and other ion movements in muscle and liver. Ann NY Acad Sci.; 483: 229-40.
  • Sperelakis N, Gonzalez-Serratos H. (2001) Skeletal muscle action potential. In Cell physiology sourcebook. A molecular approach, 3rd edn. Sperelakis N. ed, pp 865-86. Academic Press, San Diego.
  • Stange M, Tripathy A, Meissner G. (2001) Two domains in dihydropyridine receptor activate the skeletal muscle Ca2+ release channel. Biophys J.; 81: 1419-29.
  • Strehler EE, Zacharias DA. (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev.; 81: 21-50.
  • Sultan KR, Dittrich BT, Leisner E, Paul N, Pette D. (2001) Fiber type specific expression of major proteolytic systems in fast-to slow-transforming rabbit muscle. Am J Physiol Cell Physiol.; 280: C239-47.
  • Sumbilla C, Lewis D, Hammerschmidt T, Inesi G. (2002) The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. J Biol Chem.; 277: 13900-6.
  • Sun XH, Protasi F, Takahashi M, Takeshima H, Ferguson DG, Franzini-Armstrong C. (1995) Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J Cell Biol.; 129: 659-71.
  • Sweadner KJ, Donnet C. (2001) Structural similarities of Na+,K+-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem J.; 356: 685-704.
  • Takekura H, Takeshima H, Nishimura S, Takahashi M, Tanabe T, Flockerzi V, Hofmann F, Franzini-Armstrong C. (1995) Coexpression in CHO cells of two muscle proteins involved in excitation-contraction coupling. J Muscle Res Cell Motil.; 16: 465-80.
  • Takekura H, Franzini-Armstrong C. (1999) Correct targeting of dihydropyridine receptors and triadin in dyspedic mouse skeletal muscle in vivo. Dev Dyn.; 214: 372-80.
  • Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K. (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell.; 6: 11-22.
  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature.; 328: 313-8.
  • Tanabe T, Beam KG, Adams BA. (1990a) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature.; 346: 567-9.
  • Tanabe T, Mikami, Numa S, Beam KG. (1990b) Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature.; 344: 451-53.
  • Tanabe T, Adams BA, Numa S, Beam KG. (1991) Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature.; 352: 800-3.
  • Taylor DJ, Brosnan MJ, Arnold DL, Bore PJ, Styles P, Walton J, Radda GK. (1988) Ca2+- ATPase deficiency in a patient with an exertional muscle pain syndrome. J Neurol Neurosurg Psychiatry.; 51: 1425-33.
  • Terracciano CMN, DeSouza AI, Philipson KD. (1998) Na+-Ca2+ exchange and sarcoplasmic reticular Ca2+ regulation in ventricular myocytes from transgenic mice overexpressing the Na+-Ca2+ exchanger. J Physiol.; 512: 651-67.
  • Terracciano CMN, Philipson KD, MacLeod KT. (1999) The relationship between overexpression of the Na+-Ca2+ exchanger and inhibition of the sarcoplasmic reticulum (SR) Ca2+-ATPase in ventricular myocytes from transgenic mice. J Physiol.; 518: 50P-1P.
  • Territo P, Mootha V, French S, Balaban RS. (2000) Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the FO/F1- ATPase. Am J Physiol Cell Physiol.; 278: C423-35.
  • Territo PR, French SA, Dunleavy MC, Evans FJ, Balaban RS. (2001) Calcium activation of heart mitochondrial oxidative phosphorylation. Rapid kinetics of mVO2, NADH and light scattering. J Biol Chem.; 276: 2586-99.
  • Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature.; 418: 605-11.
  • Toyoshima C, Nakasako M, Nomura H, Ogawa H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature.; 405: 647-55.
  • Treves S, Feriotto G, Moccagatta L, Gambari R, Zorzato F. (2000) Molecular cloning, expression, functional characterization, chromosomal localization and gene structure of junctate, a novel integral calcium binding protein of sarco(endo)plasmic reticulum membrane. J Biol Chem.; 275: 39555-68.
  • Tupling AR, Asahi M, MacLennan DH. (2002) Sarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile function. J Biol Chem.; 277: 44740-6.
  • Wagenknecht, Grassucci R, Berkowitz J, Wiederrecht GJ, Xin HB, Fleischer S. (1996) Cryoelectron microscopy resolves FK506 binding protein sites in the skeletal muscle ryanodine receptor. Biophys J.; 70: 1709-15.
  • Wagenknecht T, Hsieh C-E, Rath BK, Fleischer S, Marko M. (2002) Electron tomography of frozen-hydrated triad junctions. Biophys J.; 83: 2491-501.
  • Wahler GM. (2001) Cardiac action potentials. In Cell physiology sourcebook. A molecular approach, 3rd edn. Sperelakis N. ed, pp 887-98. Academic Press, San Diego.
  • Weber A. (1959) On the role of calcium in the activity of adenosine-5'-triphosphate hydrolysis by actomyosin. J Biol Chem.; 234: 2764-9.
  • Wu KD, Lee WF, Wey J, Bungard D, Lytton J. (1995) Localization and quantification of endoplasmic reticulum Ca2+-ATPase isoform transcripts. Am J Physiol.; 269: C775-84.
  • Yamaguchi N, Kasai M. (1998) Identification of 30 kDa calsequestrin-binding protein which regulates calcium release from sarcoplasmic reticulum of rabbit skeletal muscle. Biochem J.; 335: 541-7.
  • Yu X, Carroll S, Rigaud JL, Inesi G. (1993) H+ counter transport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J.; 64: 1232-42.
  • Zhang Y, Fujii J, Phillips MS, Chen HS, Karpati G, Yee WC, Schrank B, Cornblath DR, Boylan KB, MacLennan DH. (1995) Characterization of cDNA and genomic DNA encoding SERCA1, the Ca2+-ATPase of human fast-twitch skeletal muscle sarcoplasmic reticulum, and its elimination as a candidate gene for Brody disease. Genomics.; 30: 415-24.
  • Zhang L, Franzini-Armstrong C, Ramesh V, Jones LR. (2001) Structural alterations in cardiac calcium release units resulting from overexpression of junctin. J Mol Cell Cardiol.; 33: 233-47.
  • Zhao XS, Shin DM, Liu LH, Shull GE, Muallem S. (2001) Plasticity and adaptation of Ca2+ signaling and Ca2+ dependent exocytosis in SERCA2+/- mice. EMBO J.; 20: 2680-9.
  • Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH. (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem.; 265: 2244-56.
  • Zorzato F, Anderson AA, Ohlendieck K, Froemming G, Guerini R, Treves S. (2000) Identification of a novel 45 kDa protein (JP-45) from rabbit sarcoplasmic reticulum junctional-face membrane. Biochem J.; 351: 537-43.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.