Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2002 | 49 | 4 | 947-957

Article title

Protein kinases CKI and CKII are implicated in modification of ribosomal proteins of the yeast Trichosporon cutaneum

Content

Title variants

Languages of publication

EN

Abstracts

EN
Phosphorylation of acidic ribosomal proteins P1/P2-P0 is a common phenomenon in eukaryotic organisms. It was found previously that in Trichosporon cutaneum, unlike in other yeast species, in addition to the two acidic ribosomal proteins, two other proteins of 15 kDa and 19 kDa of the small ribosomal subunit were phosphorylated. Here we describe two protein kinases: CKI and CKII, which are engaged in the modification of T. cutaneum ribosomal proteins. The acidic ribosomal proteins and the protein of 19 kDa were modified by CKII associated with ribosomes, while the protein of 15 kDa was modified by CKI. Protein kinase CKI was purified from cell-free extract (CKIC) and from ribosomal fraction (CKIR). The molecular mass of CKIC was established at 33 kDa while that of CKIR at 35-37 kDa. A protein of 40 kDa copurified with CKIR but not CKIC. Heparin significantly increased 40 kDa protein phosphorylation level by CKIR. Microsequencing analysis revealed the presence of CKI recognition motifs in the N-terminal fragment of the 40 kDa protein.

Year

Volume

49

Issue

4

Pages

947-957

Physical description

Dates

published
2002
received
2002-09-10
revised
2002-11-26
accepted
2002-11-27

Contributors

author
  • Department of Invertebrate Immunology, Institute of Biology, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Invertebrate Immunology, Institute of Biology, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Molecular Biology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Invertebrate Immunology, Institute of Biology, Maria Curie-Skłodowska University, Lublin, Poland

References

  • Allende JE, Allende CC. (1995) Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J.; 9: 313-23.
  • Ballesta JPG, Remacha M. (1996) The large ribosomal subunit stalk as a regulatory element of the eucaryotic translational machinery. Prog Nucleic Acid Res Mol Biol.; 55: 157-93.
  • Bradford MM. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein - dye binding. Anal Biochem.; 72: 248-54.
  • Cegielska A, Gietzen KF, Rivers A, Virshup DM. (1998) Autoinhibition of casein kinase Ie (CKIe) is relieved by protein phosphatases and limited proteolysis. J Biol Chem.; 273: 1357-64.
  • Cytrynska M, Wojda I, Jakubowicz T. (1995) The acidic ribosomal proteins of different yeast species. Phosphorylation by ribosome-associated protein kinases. J Basic Microbiol.; 35: 367-73.
  • Fish KJ, Cegielska A, Getman ME, Landes GM, Vishrup DM. (1995) Isolation and characterization of human casein kinase Ie (CKIe), a novel member of the CKI gene family. J Biol Chem.; 270: 14875-83.
  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature.; 415: 141-7.
  • Glover CVC III. (1998) On the physiological role of caseine kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol.; 59: 95-133.
  • Grankowski N, Issinger OG. (1990) Subcellular localization of casein kinase I. Biochem Biophys Res Commun.; 167: 471-6.
  • Graves PR, Roach PJ. (1995) Role of COOH-terminal phosphorylation in the regulation of casein kinase I delta. J Biol Chem.; 270: 21689-94.
  • Gross SD, Anderson RA. (1998) Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal.; 10: 699-711.
  • Hanna DE, Rethinaswamy A, Glover CVC. (1995) Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem.; 270: 25905-14.
  • Jakubowicz T, Cytrynska M, Kowalczyk W, Gasior E. (1993) Phosphorylation of acidic ribosomal proteins by ribosome associated protein kinase of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Acta Biochim Polon.; 40: 497-505.
  • Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.; 227: 680-5.
  • Oakley BR, Kirsch DR, Morris NR. (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem.; 105: 361-3.
  • Pestova TV, Hellen CUT. (2000) The structure and function of initiation factors in eukaryotic protein synthesis. Cell Mol Life Sci.; 57: 651-74.
  • Pilecki M, Grankowski N, Jacobs J, Gasior E. (1992) Specific protein kinase from S accharomyces cerevisiae cells phosphorylating 60S ribosomal proteins. Eur J Biochem.; 206: 259-67.
  • Pinna LA. (1990) Casein kinase 2: an eminence grise in cellular regulation. Biochim Biophys Acta.; 1054: 267-84.
  • Pinna LA, Meggio F. (1997) Protein kinase CK2 (`casein kinase-2') and its implication in cell division and proliferation. Prog Cell Cycle Res.; 3: 77-97.
  • Qi Z, Goedert M, Fujita DJ, Wang JH. (1998) Effect of heparin on phosphorylation site specificity of neuronal Cdc2-like kinase. FEBS Lett.; 423: 227-30.
  • Rassow J, von Ahsen O, Bomer U, Pfanner N. (1997) Molecular chaperones: towards a characterization of the heat-shock protein 70 family. Trends Biochem Sci.; 7: 129-33.
  • Roll-Mecak A, Shin B-S, Dever TE, Burley SK. (2001) Engaging the ribosome: universal IFs of translation. Trends Biochem Sci.; 26: 705-9.
  • Schneider E, Lochmann ER, Lother H. (1976) Distribution of membrane-bound and free ribosomes in growing yeast. Biochim Biophys Acta.; 432: 92-7.
  • Szyszka R, Bou G, Ballesta JPG. (1996) RAP kinase, a new enzyme phosphorylating the acidic P proteins from Saccharomyces cerevisiae. Biochim Biophys Acta.; 1293: 213-21.
  • Tuazon PT, Traugh JA. (1991) Casein kinase I and II- multipotential serine protein kinases: structure, function and regulation. Adv Second Messenger Phosphoprotein Res.; 23: 123-64.
  • Uchiumi T, Wahba AJ, Traut RR. (1987) Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking. Proc Natl Acad Sci U S A.; 84: 5580-4.
  • Vancura A, Sessler A, Leichus B, Kuret JA. (1994) Prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast. J Biol Chem.; 269: 19271-8.
  • Van der Zeijst BAM, Kool AJ, Bloemers HPJ. (1972) Isolation of active ribosomal subunits from yeast. Eur J Biochem.; 30: 15-25.
  • Wojda I, Cytrynska M, Jakubowicz T. (1996) Phosphorylation of ribosomal proteins by ribosome associated protein kinases of Trichosporon cutaneum. J Basic Microbiol.; 36: 363-9.
  • Wojda I, Frajnt M, Jakubowicz T. (1997) The effect of heparin on the activity of Trichosporon cutaneum casein kinase I. J Basic Microbiol.; 37: 371- 7.
  • Wojda I, Cytrynska M, Frajnt M, Jakubowicz T. (1999) Phosphorylation of ribosomal proteins by CKI and CKII in the presence of heparin. Acta Biochim Polon.; 46: 211-4.
  • Wool IG, Chan YL, Gluck A, Suzuki K. (1991) The primary structure of rat ribosomal proteins P0, P1 and P2 and proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie.; 73: 861-70.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv49i4p947kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.