Preferences help
enabled [disable] Abstract
Number of results
2002 | 49 | 3 | 699-709
Article title

Cloning and characterization of Arabidopsis thaliana AtNAP57 - a homologue of yeast pseudouridine synthase Cbf5p.

Title variants
Languages of publication
Rat Nap57 and its yeast homologue Cbf5p are pseudouridine synthases involved in rRNA biogenesis, localized in the nucleolus. These proteins, together with H/ACA class of snoRNAs compose snoRNP particles, in which snoRNA guides the synthase to direct site-specific pseudouridylation of rRNA. In this paper we present an Arabidopsis thaliana protein that is highly homologous to Cbf5p (72% identity and 85% homology) and NAP57 (67% identity and 81% homology). Moreover, the plant protein has conserved structural motifs that are characteristic features of pseudouridine synthases of the TruB class. We have named the cloned and characterized protein AtNAP57 (A rabidopsis t haliana homologue of NAP57 ). AtNAP57 is a 565 amino-acid protein and its calculated molecular mass is 63 kDa. The protein is encoded by a single copy gene located on chromosome 3 of the A. thaliana genome. Interestingly, the AtNAP57 gene does not contain any introns. Mutations in the human DKC1 gene encoding dyskerin (human homologue of yeast Cbf5p and rat NAP57) cause dyskeratosis congenita a rare inherited bone marrow failure syndrome characterized by abnormal skin pigmentation, nail dystrophy and mucosal leukoplakia.

Physical description
  • Adam Mickiewicz University, Faculty of Biology, Department of Gene Expression, Poznań, Poland
  • Adam Mickiewicz University, Faculty of Biology, Department of Gene Expression, Poznań, Poland
  • Adam Mickiewicz University, Faculty of Biology, Department of Gene Expression, Poznań, Poland
  • Adam Mickiewicz University, Faculty of Biology, Department of Gene Expression, Poznań, Poland
  • 1. Sollner-Webb, B., Tycowski, K.T. & Steitz, J.A. (1996) Ribosomal RNA processing in eukaryotes; in Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Biosynthesis (Zimmermann, R.A. & Dahlberg, A.E., eds.) pp. 469-490, CRC Press, Boca Raton.
  • 2. Scheer, U. & Hock, R. (1999) Structure and function of the nucleolus. Curr. Opin. Cell. Biol. 11, 385-390.
  • 3. Charette, M. & Gray, M.W. (2000) Pseudouridine in RNA: What, where, how, and why. Life 49, 341-351.
  • 4. Ofengand, J., Bakin, A., Wrzesinski, J., Nurse, K. & Lane, B.G. (1995) The pseudouridine residues of ribosomal RNA. Biochem. Cell Biol. 73, 915-924.
  • 5. Massenet, S., Mougin, A. & Branlant, C. (1998) Posttranscriptional modifications in the U small nuclear RNAs; in Modification and Editing of RNA (Grosjean, H. & Benne, R., eds.) pp. 201-227, ASM Press, Washington, DC.
  • 6. Ofengand, J. & Fournier, M.J. (1998) The pseudouridine residues of rRNA: Number, location, biosynthesis, and function; in Modification and Editing of RNA (Grosjean, H. & Benne, R., eds.) pp. 229-253, ASM Press, Washington, DC.
  • 7. Gu, X., Liu, Y. & Santi, D.V. (1999) The mechanism of pseudouridine synthase I as deduced from its interaction with 5-fluorouracil-tRNA. Proc. Natl. Acad. Sci. U.S.A. 96, 14270- 14275.
  • 8. Koonin, E.V. (1996) Pseudouridine synthases: Four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24, 2411-2415.
  • 9. Samuelsson, T. & Olsson, M. (1990) Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae. J. Biol. Chem. 265, 8782- 8787.
  • 10. Motorin, Y., Keith, G., Simon, C., Foiret, D., Simos, G., Hurt, E. & Grosjean, H. (1998) The yeast tRNA: Pseudouridine synthase Pus1p displays a multisite substrate specificity. RNA. 4, 856-869.
  • 11. Wrzesinski, J., Nurse, K., Bakin, A., Lane, B.G. & Ofengand, J. (1995) A dual-specificity pseudouridine synthase: An Escherichia coli synthase purified and cloned on the basis of its specificity for Y 746 in 23S RNA is also specific for Y 32 in tRNAPhe. RNA 1, 437-448.
  • 12. Massenet, S., Motorin, Y., Lafontaine, D.L.J., Hurt, E.C., Grosjean, H. & Branlant, C. (1999) Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase Pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol. Cell. Biol. 19, 2142-2154.
  • 13. Becker, H.F., Motorin, Y., Planta, R.J. & Grosjean, H. (1997) The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of Y 55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 25, 4493-4499.
  • 14. Ni, J., Tien, A.L. & Fournier, M.J. (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565-573.
  • 15. Balakin, A.G., Smith, L. & Fournier, M.J. (1996) The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions. Cell 86, 823-834.
  • 16. Ganot, P., Bortolin, M.-L. & Kiss, T. (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799-809.
  • 17. Ganot, P., Caizergues-Ferrer, M. & Kiss, T. (1997) The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11, 941-956.
  • 18. Lafontaine, D.L.J., Bousqet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M. & Tollervey, D. (1998) The box H+ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12, 527-537.
  • 19. Meier, U.T. & Blobel, G. (1994) NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J. Cell Biol. 127, 1505-1514.
  • 20. Jiang, W., Middleton, K., Yoon, H.-J., Fouquet, C. & Carbon, J. (1993) An essential yeast protein, Cbf5p, binds in vitro to centromeres and microtubules. Mol. Cell Biol. 13, 4884-4893.
  • 21. Nurse, K., Wrzesinski, J., Bakin, A., Lane, B.G. & Ofengand, J. (1995) Purification, cloning, and properties of the tRNA Y 55 synthase from Escherichia coli. RNA 1, 102-112.
  • 22. Zebarjadian, Y., King, T., Fournier, M.J., Clarke, L. & Carbon, J. (1999) Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell. Biol. 19, 7461- 7472.
  • 23. Cadwell, C., Yoon, H.-J., Zebarjadian, Y. & Carbon, J. (1997) The yeast nucleolar protein Cbf5p is involved in rRNA biosynthesis and interacts genetically with the RNA polymerase I transcription factor RRN3. Mol. Cell. Biol. 17, 6175-6183.
  • 24. Frohman, M.A. (1993) Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: Thermal RACE. Methods Enzymol. 218, 340-356.
  • 25. Frohman, M.A. (1994) Cloning PCR products; in The Polymerase Chain Reaction (Mullis, K.B., Ferre, F. & Gibbs, R.A., eds.) pp. 14-37, Birkhäuser, Boston.
  • 26. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
  • 27. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
  • 28. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
  • 29. Aravind, L. & Koonin, E.V. (1999) Novel predicted RNA-binding domains associated with the translation machinery. J. Mol. Evol. 48, 291-302.
  • 30. Dingwall, C. & Laskey, R.A. (1991) Nuclear targeting sequences - a consensus? Trends Biochem. Sci. 16, 478-481.
  • 31. Phillips, B., Billin, A.N., Cadwell, C., Buchholz, R., Erickson, C., Merriam, J.R., Carbon, J. & Poole, S.J. (1998) The Nop60B gene of Drosophila encodes an essential nucleolar protein that functions in yeast. Mol. Gen. Genet. 260, 20-29.
  • 32. Heiss, N.S., Knight, S.W., Vulliamy, T.J., Klauck, S.M., Wiemann, S., Mason, P.J., Poustka, A. & Dokal, I. (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32-38.
  • 33. Knight, S.W., Heiss, N.S., Vulliamy, T.J., Greschner, S., Stavrides, G., Pai, G.S., Lestringant, G., Varma, N., Mason, P.J., Dokal, I. & Poustka, A. (1999) X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am. J. Hum. Genet. 65, 50-58.
  • 34. Hassock, S., Vetrie, D. & Gianelli, F. (1999) Mapping and characterization of the X-linked dyskeratosis congenita (DKC) gene. Genomics 55, 21-27.
  • 35. Vulliamy, T.J., Knight, S.W., Heiss, N.S., Smith, O.P., Poustka, A., Dokal, I. & Mason, P.J. (1999) Dyskeratosis congenita caused by a 3' deletion and somatic mosaicism in a female carrier. Blood 94, 1254-1260.
  • 36. Heiss, N.S., Girod, A., Salowsky, R., Wiemann, S., Papperkok, R. & Poustka, A. (1999) Dyskerin localizes to the nucleolus and its mislocalization is unlikely to play a role in the pathogenesis of dyskeratosis congenita. Hum. Mol. Genet. 8, 2515-2524.
  • 37. Youssoufian, H., Gharibyan, V. & Qatanani, M. (1999) Analysis of epitope-tagged forms of the dyskeratosis congenita protein (dyskerin): Identification of a nuclear localization signal. Blood Cells Mol. Dis. 25, 305-309.
  • 38. Mitchell, J.R., Wood, E. & Collins, K. (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551-555.
  • 39. Shay, J.W. & Wright, W.E. (1999) Mutant dyskerin ends relationship with telomerase. Science 286, 2284-2286.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.