PL EN


Preferences help
enabled [disable] Abstract
Number of results
2002 | 49 | 3 | 597-614
Article title

NTPase/helicase of Flaviviridae: inhibitors and inhibition of the enzyme.

Content
Title variants
Languages of publication
EN
Abstracts
EN
RNA nucleoside triphosphatases (NTPase)/helicases represent a large family of proteins that are ubiquitously distributed over a wide range of organisms. The enzymes play essential role in cell development and differentiation, and some of them are involved in transcription and replication of viral single-stranded RNA genomes. The enzymatic activities of a NTPase/helicase were also detected in the carboxyl-terminal non-structural protein 3 (NS3) of members of the Flaviviridae family. The crucial role of the enzyme for the virus life cycle was demonstrated in knock out experiments and by using NTPase/helicase specific inhibitors. This makes the enzyme an attractive target for development of Flaviviridae-specific antiviral therapies. This review will summarize our knowledge about the function and structure of the enzyme, update the spectrum of inhibitors of the enzymatic activities of the NTPase/helicase and describe the different mechanisms by which the compounds act. Some of the compounds reviewed herein could show potential utility as antiviral agents against Flaviviridae viruses.
Publisher

Year
Volume
49
Issue
3
Pages
597-614
Physical description
Dates
published
2002
received
2002-06-26
accepted
2002-08-20
Contributors
  • Abteilung für Virologie, Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany;
  • Abteilung für Virologie, Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany;
  • Abteilung für Virologie, Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany;
  • Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, U.S.A.;
author
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
References
  • Banerjee R, Dasgupta A. (2001) Specific interaction of hepatitis C virus protease/helicase NS3 with the 3·-terminal sequences of viral positive- and negative-strand RNA. J Virol.; 75: 1708-21.
  • Bartenschlager R. (1997) Candidate targets for hepatitis C virus-specific antiviral therapy. Intervirology.; 40: 378-93.
  • Boehmer PE, Lehman IR. (1993) Herpes simplex virus type 1 ICP8: helix-destabilizing properties. J Virol.; 67: 711-5.
  • Borowski P, Heiland M, Oehlmann K, Becker B, Kornetzky L, Feucht H-H, Laufs R. (1996) Non-structural protein 3 of hepatitis C virus inhibits phosphorylation mediated by cAMP-dependent protein kinase. Eur J Biochem.; 237: 611-8.
  • Borowski P, Heiland M, Feucht HH, Laufs R. (1999a) Characterisation of non-structural protein 3 of hepatitis C virus as modulator of protein phosphorylation mediated by PKA and PKC: evidences for action on the level of substrate and enzyme. Arch Virol.; 144: 687-701.
  • Borowski P, Kuhl R, Mueller O, Hwang L-H, Schulze zur Wiesch J, Schmitz H. (1999b) Biochemical properties of a minimal functional domain with ATP-binding activity of the NTPase/helicase of hepatitis C virus. Eur J Biochem.; 266: 715-23.
  • Borowski P, Kuhl R, Laufs R, Schulze zur Wiesch J, Heiland M. (1999c) Identification and characterization of a histone binding site of the non-structural protein 3 of hepatitis C virus.J Clin Virol.; 13: 61-9.
  • Borowski P, Mueller O, Niebuhr A, Kalitzky M, Hwang L-H, Schmitz H, Siwecka MA, Kulikowski T. (2000) ATP-binding domain of NTPase/helicase as a target for hepatitis C antiviral therapy. Acta Biochim Polon.; 47: 173-80.
  • Borowski P, Niebuhr A, Mueller O, Bretner M, Felczak K, Kulikowski T, Schmitz H. (2001a) Purification and characterization of West Nile virus NTPase/helicase, evidence for dissociation of the NTPase and helicase activities of the enzyme. J Virol.; 75: 3220-9.
  • Borowski P, Lang M, Niebuhr A, Haag A, Schmitz H, Schulze zur Wiesch J, Choe J, Siwecka MA, Kulikowski T. (2001b)Inhibition of the helicase activity of HCV NTPase/helicase by 1-beta-D-ribofuranosyl- 1,2,4-triazole-3-carboxamide-5´-tiphosphate (ribavirin-TP). Acta Biochim Polon.; 48: 739-44.
  • Borowski P, Lang M, Haag A, Schmitz H, Choe J, Chen HM, Hosmane RS. (2002) Characterization of imidazo[4,5-d]pyridazine nucleosides as modulators of unwinding reaction mediated by West Nile virus nucleoside triphosphatase/helicase: evidence for activity on the level of substrate and/or enzyme. Antimicrob Agents Chemother.; 46: 1231-9.
  • Chambers TJ, Hahn CS, Galler R, Rice MC. (1990) Flavivirus genome organization expression and replication. Annu Rev Microbiol.; 44: 649-88.
  • Chao K, Lohman TM. (1991) DNA-induced dimerization of the Escherichia coli Rep helicase. J Mol Biol.; 221: 1165-81.
  • Chase JW, Wiliams KR. (1986) Single-stranded DNA binding proteins required for DNA replication. Annu Rev Biochem.; 55: 103-36.
  • Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM. (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med.; 3: 866-71.
  • Cho HS, Ha NC, Kang LW, Chung KM, Back SM, Jang SK, Oh BH. (1998) Crystal structure of RNA helicase from genotype 1b hepatitis C virus, A feasible mechanism of unwinding duplex RNA. J Biol Chem.; 273: 15045-52.
  • Crute JJ, Grygon CA, Hargrave KD, Simoneau B, Faucher AM, Bolger G, Kibler P, Liuzzi M, Cordingley MG. (2002) Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat Med.; 8: 386-91.
  • Diana GD, Bailey TR. (1996) Compounds composition and methods for treatment of hepatitis C. U.S. Patent No. 5,633,388.
  • Diana GD, Bailey TR, Nitz TJ. (1998) Compounds composition and methods for treatment of hepatitis C. U.S. Patent No. 6,127,384.
  • Fuller-Pace FV. (1994) RNA helicases: modulators of RNA structure. Trends Cell Biol.; 4: 271-4.
  • Gallinari P, Brennan D, Nardi C, Brunetti M, Tomei L, Steinkuhler C, De Francesco R. (1998) Multiple enzymatic activities associated with recombinant NS3 of hepatitis C virus. J Virol.; 72: 6758-69.
  • Ganapathi R, Kamath N, Constantinou A, Grabowski D, Ford J, Anderson A. (1991) Effect of the calmodulin inhibitor trifluoperazine on phosphorylation of P-glycoprotein and topoisomerase II: relationship to modulation of subcellular distribution DNA damage and cytotoxicity of doxorubicin in multidrug resistant L1210 mouse leukemia cells. Biochem Pharmacol.; 41: R21-6.
  • Georgaki A, Strack B, Podust V, Hubscher U. (1992) DNA unwinding activity of of replication protein A. FEBS Lett.; 308: 240-5.
  • Gorbalenya AE, Koonin EV. (1989) Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Res.; 17: 8413-40.
  • Gorbalenya AE, Koonin EV. (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol.; 3: 419-29.
  • Gorbalenya AE, Koonin EV, Donschenko AP, Blinov VM. (1989) Two related superfamilies of putative helicases involved in replication recombination repair and expression of DNA and RNA genomes. Nucleic Acids Res.; 17: 4713-30.
  • Gu B, Liu C, Lin-Goerke J, Malley DR, Gutshall LL, Feltenberger CA, Del Vecchio AM. (2000) The RNA helicase and nucleotide triphosphatase activities of the bovine viral diarrhea virus NS3 protein are essential for viral replication. J Virol.; 74: 1794-800.
  • Gwack Y, Kim DW, Han JH, Choe J. (1996) Characterization of RNA binding activity and RNA helicase activity of the hepatitis C virus NS3 protein. Biochem Biophys Res Commun.; 225: 654-9.
  • Gwack Y, Yoo H, Song I, Choe J, Han JH. (1999) RNA stimulated ATPase and RNA helicase activities and RNA binding domain of hepatitis G virus nonstructural protein 3. J Virol.; 73: 2909-15.
  • Halstead SB. (1992) The XXth century dengue pandemic: need for survieillance and research. World Health Stat Q.; 45: 292-8.
  • Hay B, Jan LY, Jan YN. (1988) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell.; 55: 577-87.
  • Hesson T, Mannarino A, Cable M. (2000) Probing the relationship between RNA-stimulated ATPase and helicase activities of HCV NS3 using 2´-O-methyl RNA substrates. Biochemistry.; 39: 2619-25.
  • Hsu CC, Hwang LH, Huang YW, Chi WK, Chu YD, Chen DS. (1998) An ELISA for RNA helicase activity: application as an assay of the NS3 helicase of hepatitis C virus. Biochem Biophys Res Commun.; 253: 594-9.
  • Ishido S, Fujita T, Hotta H. (1998) Complex formation of NS5B with NS3 and NS4A proteins of hepatitis C virus. Biochem Biophys Res Commun.; 244: 35-40.
  • Kadare G, Haenni A. (1997) Virus-encoded RNA helicases. J Virol.; 71: 2583-90.
  • Kim DW, Gwack Y, Han JH, Choe J. (1997) Towards defining a minimal functional domain for NTPase and RNA helicase activities of the hepatitis C virus NS3 protein. Virus Res.; 49: 17-25.
  • Kim JL, Morgenstern K, Griffith J, Dwyer M, Thomson J, Murcko M, Lin C, Caron P. (1998) Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure.; 6: 89-100.
  • Koch JO, Bartenschlager R. (1999) Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3 NS4A and NS4B. J Virol.; 73: 7138-46.
  • Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G. (1997) Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell.; 90: 635-47.
  • Kuo M-D, Chin C, Hsu S-L, Shiao J-Y, Wang T-M, Lin J-H. (1996)Characterization of the NTPase activity of Japanese encephalitis virus NS3 protein. J Gen Virol.; 77: 2077-84.
  • Kwong AD, Risano C. (1998) ) Development of a hepatitis C virus RNA helicase high troughput assay. In Antiviral methods and protocols. Kinchington D, Schinazi RF. eds. Humana Press Inc, Totowa NJ.
  • Kyono K, Miyashiro M, Tagushi I. (1998) Detection of hepatitis C virus helicase activity using the scintillation proximity assay system. Anal Biochem.; 257: 120-6.
  • Lain S, Riechmann L, Martin MT, Garcia JA. (1989) Homologous potyvirus and flavivirus proteins belonging to a superfamily of helicase-like proteins. Gene.; 82: 357-62.
  • Levin MK, Patel SS. (1999) The helicase from hepatitis C virus is active as an oligomer. J Biol Chem.; 274: 31839-46.
  • Leyssen P, De Clercq E, Neyts J. (2000) Perspectives for the treatment of infections with Flaviviridae. Clin Microbiol Rev.; 13: 67-82.
  • Li H, Clum S, You S, Ebner KE, Padmanabhan R. (1999) The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids.J Virol.; 73: 3108-16.
  • Luking A, Stahl U, Schmidt U. (1998) The protein family of RNA helicases. Crit Rev Biochem Mol Biol.; 33: 259-96.
  • Matson SW, Kaiser-Rogers KA. (1990) DNA helicases. Annu Rev Biochem.; 59: 289-329.
  • Matusan AE, Pryor MJ, Davidson AD, Wright PJ. (2001) Mutagenesis of the dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. J Virol.; 75: 9633-43.
  • Meyers G, Thiel HJ. (1996) Molecular characterization of pestiviruses. Adv Virus Res.; 47: 53-118.
  • Miller H, Purcell R. (1990) Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proc Natl Acad Sci U S A.; 87: 2057-61.
  • Monath TP. (1987) Yellow fever: a medically neglected disease. Report on a seminar. Rev Infect Dis.; 9: 165-75.
  • Monath TP, Heinz FX. (1996) Flaviviruses. In Fields virology. Fields BN, Knipe DM, Howley PM. eds, 3rd edn, vol 1, pp 961-1034. Lippincott-Raven Publishers, Philadelphia.
  • Moore KJM, Lohman TM. (1994) Kinetic mechanism of adenine nucleotide binding to and hydrolysis by the Escherichia coli Rep monomer. 1. Use of fluorescent nucleotide analogues. Biochemistry.; 33: 14550-64.
  • Morgenstern KA, Landro JA, Hsiao K, Lin C, Young G, Su M-S, Thomson JA. (1997) Polynucleotide modulation of the protease nucleoside triphosphatase and helicase activities of hepatitis C virus NS3-NS4A complex. J Virol.; 71: 3767-75.
  • Muerhoff AS, Leary TP, Simons JN, Pilot-Matias TJ, Dawson GJ, Erker JC, Chalmers ML, Schlauder GG, Desai SM, Mushahwar IK. (1995) Genomic organization of GB viruses A and B: two new members of the Flaviviridae associated with GB agent hepatitis. J Virol.; 69: 5621-30.
  • Neddermann P, Clementi A, De Francesco R. (1999) Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease NS4A NS4B and NS5A encoded on the same polyprotein. J Virol.; 73: 9984-91.
  • Nettelton PE, Entrican G. (1995) Ruminant pestiviruses. Br Vet J.; 151: 615-42.
  • Notarnicola SM, Park K, Griffith JD, Richardson CC. (1995) A domain of the gene 4 helicase/primase of bacteriophage T7 required for the formation of an active hexamer. J Biol Chem.; 270: 20215-24.
  • Phoon CW, Ng YP, Ting AE, Yeo SL, Sim MM. (2001) Biological evaluation of hepatitis C virus helicase inhibitors. Bioorg Med Chem Lett.; 11: 1647-50.
  • Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S. (1998) Binding of hepatitis C virus to CD81. Science.; 282: 938-41.
  • Porter D. (1998) Inhibition of the hepatitis C virus helicase associated ATPase activity by the combination of ADP NaF MgCl2 and poly(rU). J Biol Chem.; 273: 7390-6.
  • Porter DJ, Preugschat F. (2000) Strand-separating activity of hepatitis C virus helicase in the absence of ATP. Biochemistry.; 39: 5166-73.
  • Preugschat F, Averett D, Clarke B, Porter D. (1996) A steady-state and presteady-state kinetic analysis of the NTPase activity associated with the hepatitis C virus NS3 helicase domain.J Biol Chem.; 271: 24449-57.
  • Pryor MJ, Gualano RC, Lin AD, Davidson AD, Wright PJ. (1998) Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. J Gen Virol.; 79: 2631-9.
  • Rice MC. (1996) Flaviviridae: the viruses and their replication. In Fields virology. Fields BN, Knipe DM, Howley PM. eds, 3rd edn, vol. 1, pp 931-60. Lippincott-Raven Publishers, Philadelphia.
  • Scheffner M, Knippers R, Stahl H. (1989) RNA unwinding activity of SV40 large T antigen.Cell.; 57: 955-63.
  • Spector FC, Liang L, Giordano H, Sivaraja M, Petersen MP. (1998) Inhibition of herpes simplex virus replication by a 2-amino thiazole via interactions with the helicase component of the UL5-UL8-UL52 complex. J Virol.; 72: 6979-87.
  • Subramanya HS, Bird LE, Brannigan JA, Wigley DB. (1996) Crystal structure of a DExx box DNA helicase. Nature.; 384: 379-83.
  • Suzich J, Tamura J, Palmer-Hill F, Warrener P, Grakoui A, Rice MC, Feinstone S, Collett M. (1993) Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J Virol.; 67: 6152-8.
  • Tai C-L, Chi W-K, Chen D-S, Hwang L-H. (1996) The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J Virol.; 70: 8477-84.
  • Tamura JK, Warrener P, Collett MS. (1993) RNA-stimulated NTPase activity associated with the p80 protein of the pestivirus bovine viral diarrhea virus. Virology.; 193: 1-10.
  • Utama A, Shimizu H, Morikawa S, Hasebe F, Morita K, Idarash AI, Hatsu M, Takamizawa K, Miyamura T. (2000) Identification and characterization of the RNA helicase activity of Japanese encephalitis virus NS3 protein. FEBS Lett.; 465: 74-8.
  • Walker JE, Saraste M, Runswick MJ, Gay NJ. (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase myosin kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J.; 1: 945-51.
  • Warrener P, Collett MS. (1995) Pestivirus NS3 (p80) protein possesses RNA helicase activity. J Virol.; 69: 1720-6.
  • Wassarman DA, Steitz JA. (1991) RNA splicing, alive with DEAD proteins. Nature.; 349: 463-4.
  • Westaway EG. (1987) Flavivirus replication strategy. Adv Virus Res.; 33: 45-90.
  • Westaway EG, Brinton MA, Gaidamovich Ya, Horzinek MC, Igarashi A, Kaariainen L, Lvov DK, Porterfield JS, Russell PK, Trent DW. (1985) Flaviviridae. Intervirology.; 24: 183-92.
  • Wu Q, Bounaud PY, Kuduk S, Yang CP, Ojima I, Horwitz S, Orr G. (1998) Identification of the domains of photoincorporation of the 3´- and 7-benzophenone analogues of taxol in the carboxyl-terminal half of murine mdr1b P glycoprotein. Biochemistry.; 37: 11272-9.
  • Yao N, Hesson T, Cable M, Hong Z, Kwong A, Le H, Weber, P. (1997) Structure of the hepatitis C virus RNA helicase domain. Nat Struct Biol.; 4: 463-7.
  • Zhang S, Maacke H, Grosse F. (1995) Molecular cloning of the gene encoding nuclear DNA helicase II, A bovine homologue of human RNA helicase A and Drosophila Mle protein. J Biol Chem.; 270: 16422-7.
  • Zhang N, Chen H-M, Koch V, Schmitz H, Liao C-L, Bretner M, Bhadti VS, Fattom A, Naso R, Hosmane RS, Borowski P. (2002) Ring-expanded (fat) nucleoside and nucleotide analogues exhibit potent in vitro activity against Flaviviridae NTPases/helicases including those of the West Nile virus (WNV) hepatitis C virus (HCV) and japanese encephalitis virus (JEV). Submitted to J Med. Chem.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv49i3p597kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.