PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 4 | 969-983
Article title

Cloning of the Haemophilus influenzae Dam methyltransferase and analysis of its relationship to the Dam methyltransferase encoded by the HP1 phage.

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we report cloning and experimental characterization of the DNA adenine methyltransferase (dam) gene from Haemophilus influenzae and comparison of ts product with the Dam protein from the lysogenic phage of H. influenzae, HP1. Molecular modeling of M.HinDam and M.HP1Dam was carried out, providing a framework for a comparative analysis of these enzymes and their close homologs in the tructural context. Both proteins share the common fold and essential cofactor-bind ng and catalytic residues despite overall divergence. However, subtle but significant differences in the cofactor-binding pocket have been identified. Moreover, while M.HinDam seems to contact its target DNA sequence using a number of loops, most of them are missing from M.HP1Dam. Analysis of both MTases suggests that their catalytic activity was derived from a common ancestor, but similar sequence specificities rose by convergence.
Publisher

Year
Volume
48
Issue
4
Pages
969-983
Physical description
Dates
published
2001
received
2001-09-24
accepted
2001-12-3
Contributors
  • Bioinformatics Laboratory, International Institute of Molecular and Cell Biology, ks. Trojdena 4, 02-109 Warszawa, Poland
  • Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-093 Warszawa, Poland
author
  • Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-093 Warszawa, Poland
  • Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-093 Warszawa, Poland
References
  • 1.Malone, T., Blumenthal, R.M. & Cheng, X. (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618-632.
  • 2.Fauman, E.B., Blumenthal, R.M. & Cheng, X. (1999) Structure and evolution of AdoMet-dependent Mtases; in: S-Adenosylmethionine-dependent Methyltransferases: Structures and Functions (Cheng, X., et al., eds.) pp. 1-38, World Scientific Inc., Singapore.
  • 3.Labahn, J., Granzin, J., Schluckebier, G., Robinson, D.P., Jack, W.E., Schildkraut, I. & Saenger, W. (1994) Three-dimensional structure of the adenine-specific DNA methyltransferase M. TaqI in complex with the cofactor S-adenosylmethionine. Proc. Natl. Acad. Sci. U.S.A. 91, 10957-10961.
  • 4.Bujnicki, J.M. (2001) Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons. Acta Biochim. Polon. 48, 935-967.
  • 5.Tran, P.H., Korszun, Z.R., Cerritelli, S., Springhorn, S.S. & Lacks, S.A. (1998) Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of Streptococcus pneumoniae bound to S-adenosylmethionine. Structure 6, 1563-1575.
  • 6.Modrich, P. (1991) Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229-253.
  • 7.Modrich, P. (1989) Methyl-directed DNA mismatch correction. J. Biol. Chem. 264, 6597-6600.
  • 8.Oka, A., Sugimoto, K., Takanami, M. & Hirota, Y. (1980) Replication origin of the Escherichia coli K-12 chromosome: The size and structure of the minimum DNA segment carrying the information for autonomous replication. Mol. Gen. Genet. 178, 9-20.
  • 9.Crooke, E. (1995) DNA synthesis initiated at oriC: In vitro replication reactions. Methods Enzymol. 262, 500-506.
  • 10.Bogan, J.A. & Helmstetter, C.E. (1997) DNA sequestration and transcription in the oriC region of Escherichia coli. Mol. Microbiol. 26, 889-896.
  • 11.Palmer, B.R. & Marinus, M.G. (1994) The dam and dcm strains of Escherichia coli — a review. Gene 143, 1-12.
  • 12.Scherzer, E., Auer, B. & Schweiger, M. (1987) Identification, purification, and characterization of Escherichia coli virus T1 DNA methyltransferase. J. Biol. Chem. 262, 15225- 15231.
  • 13.Heithoff, D.M., Sinsheimer, R.L., Low, D.A. & Mahan, M.J. (1999) An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967-970.
  • 14.Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., McKenney, K., Sutton, G., FitzHugh, W., Fields, C., Gocayne, J.D., Scott, J., Shirley, R., Liu, L.I., Glodek, A., Kelley, J.M., Weidman, J.F., Phillips, C.A., Spriggs, T., Hedblom, E., Cotton, M.D., Utterback, T., Hanna, M.C., Nguyen, D.T., Saudek, D.M., Brandon, R.C., Fine, L.D., Fritchman, J.L., Fuhrmann, J.L., Geoghagen, N.S., Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, C.M., Smith, H.O. & Venter, J.C. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512.
  • 15.Stuy, J.H. (1974) Origin and direction of Haemophilus bacteriophage HP1 DNA replication. J. Virol. 13, 757-759.
  • 16.Piekarowicz, A. & Bujnicki, J.M. (1999) Cloning of the Dam methyltransferase gene from Haemophilus influenzae bacteriophage HP1. Acta Microbiol. Pol. 48, 123-129.
  • 17.Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual; 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • 18.Barcak, G.J., Chandler, M.S., Redfield, R.J. & Tomb, J.F. (1991) Genetic systems in Haemophilus influenzae. Methods Enzymol. 204, 321-342.
  • 19.Mayer, M.P. (1995) A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163, 41-46.
  • 20.Renbaum, P. & Razin, A. (1995) Interaction of M. SssI and M. HhaI with single-base mismatched oligodeoxynucleotide duplexes. Gene 157, 177-179.
  • 21.Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
  • 22.Bujnicki, J.M., Elofsson, A., Fischer, D. & Rychlewski, L. (2001) Structure prediction Meta Server. Bioinformatics 17, 750-751.
  • 23.Sali, A. & Blundell, T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815.
  • 24.Hooft, R.W., Vriend, G., Sander, C. & Abola, E.E. (1996) Errors in protein structures. Nature 381, 272.
  • 25.Eisenberg, D., Luthy, R. & Bowie, J.U. (1997) VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 277, 396-404.
  • 26.McClelland, M., Nelson, M. & Raschke, E. (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 22, 3640-3659.
  • 27.Radlinska, M. & Bujnicki, J.M. (2001) Cloning of enterohemorrhagic Escherichia coli phage VT-2 Dam methyltransferase. Acta Microbiol. Pol. 50, 161-167.
  • 28.Fischer, D. & Eisenberg, D. (1996) Protein fold recognition using sequence-derived predictions. Protein Sci. 5, 947-955.
  • 29.Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283-291.
  • 30.Bugl, H., Fauman, E.B., Staker, B.L., Zheng, F., Kushner, S.R., Saper, M.A., Bardwell, J.C. & Jakob, U. (2000) RNA methylation under heat shock control. Mol. Cell 6, 349-360.
  • 31.Goedecke, K., Pignot, M., Goody, R.S., Scheidig, A.J. & Weinhold, E. (2001) Structure of the N6-adenine DNA methyltransferase M. TaqI in complex with DNA and a cofactor analog. Nat. Struct. Biol. 8, 121-125.
  • 32.Karplus, P.A. & Schulz, G.E. (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72, 212-213.
  • 33.Lustig, B. & Jernigan, R.L. (1995) Consistencies of individual DNA base-amino acid interactions in structures and sequences. Nucleic Acids Res. 23, 4707-4711.
  • 34.Chothia, C. & Lesk, A.M. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823-826.
  • 35.Bujnicki, J.M. (1999) Comparison of protein structures reveals monophyletic origin of the AdoMet-dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N4-cytosine and N6-adenine DNA methylation. In Silico Biol. 1, 175-182.
  • 36.Plunkett, G., Rose, D.J., Durfee, T.J. & Blattner, F.R. (1999) Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181, 1767-1778.
  • 37.Pontarollo, R.A., Rioux, C.R. & Potter, A.A. (1997) Cloning and characterization of bacteriophage-like DNA from Haemophilus somnus homologous to phages P2 and HP1. J. Bacteriol. 179, 1872-1879.
  • 38.Campbell, A. (1994) Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol. 48, 193-222.
  • 39.Holland, J. & Domingo, E. (1998) Origin and evolution of viruses. Virus Genes 16, 13-21.
  • 40.Piekarowicz, A., Brzezinski, R., Smorawinska, M., Kauc, L., Skowronek, K., Lenarczyk, M., Golembiewska, M. & Siwinska, M. (1986) Major spontaneous genomic rearrengements in Haemophilus influenzae S2 and HP1c1 bacteriophages. Gene 49, 111-118.
  • 41.Hendrix, R.W., Smith, M.C., Burns, R.N., Ford, M.E. & Hatfull, G.F. (1999) Evolutionary relationships among diverse bacteriophages and prophages: All the world ’s a phage. Proc. Natl. Acad. Sci. U.S.A. 96, 2192-2197.
  • 42.Fujioka, M. (1992) Mammalian small molecule methyltransferases: Their structural and functional features. Int. J. Biochem. 24, 1917- 1924.
  • 43.Jeltsch, A., Christ, F., Fatemi, M. & Roth, M. (1999) On the substrate specificity of DNA methyltransferases. Adenine-N6 DNA methyltransferases also modify cytosine residues at position N4. J. Biol. Chem.274, 19538- 19544.
  • 44.Sheikhnejad, G., Brank, A., Christman, J.K., Goddard, A., Alvarez, E., Ford, H.J., Marquez, V.E., Marasco, C.J., Sufrin, J.R., O’Gara, M. & Cheng, X. (1999) Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J. Mol. Biol. 285, 2021-2034.
  • 45.Ho, D.K., Wu, J.C., Santi, D.V. & Floss, H.G. (1991) Stereochemical studies of the C-methylation of deoxycytidine catalyzed by HhaI methylase and the N-methylation of deoxyadenosine catalyzed by EcoRI methylase. Arch. Biochem. Biophys. 284, 264-269.
  • 46.Yang, A.S., Shen, J.C., Zingg, J.M., Mi, S. & Jones, P.A. (1995) HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 23, 1380-1387.
  • 47.Richardson, A.R. & Stojiljkovic, I. (2001) Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol. Microbiol. 40, 645-655.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv48i4p969kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.