PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 4 | 935-967
Article title

Understanding the evolution of restriction-modification systems: Clues from sequence and structure comparisons.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Restriction-modification (RM) systems comprise two opposing enzymatic activities: a restriction endonuclease, that targets specific DNA sequences and performs endonucleolytic cleavage, and a modification methyltransferase that renders these sequences resistant to cleavage. Studies on molecular genetics and biochemistry of RM systems have been carried out over the past four decades, laying foundations for modern molecular biology and providing important models for mechanisms of highly specific protein-DNA interactions. Although the number of known, relevant sequences 3D structures of RM proteins is growing steadily, we do not fully understand their functional diversities from an evolutionary perspective and we are not yet able to engineer new sequence specificities based on rational approaches. Recent findings on the evolution of RM systems and on their structures and mechanisms of action have led to a picture in which conserved modules with defined function are shared between different RM proteins and other enzymes involved in nucleic acid biochemistry. On the other hand, it has been realized that some of the modules have been replaced in the evolution by unrelated domains exerting similar function. The aim of this review is to give a survey on the recent progress in the field of structural phylogeny of RM enzymes with special emphasis on studies of sequence-structure-function relationships and emerging potential applications in biotechnology.
Publisher

Year
Volume
48
Issue
4
Pages
935-967
Physical description
Dates
published
2001
received
2001-09-24
accepted
2001-12-3
Contributors
  • Bioinformatics Laboratory, International Institute of Molecular and Cell Biology, ks. Trojdena 4, 02-109 Warszawa, Poland
References
  • 1. Wilson, G.G. & Murray, N.E. (1991) Restriction and modification systems. Annu. Rev. Genet. 25, 585-627.
  • 2. Arber, W. & Dussoix, D. (1962) Host specificity of DNA produced by Escherichia coli. Host controlled modification of bacteriophage λ. J. Mol. Biol. 5, 18-36.
  • 3. Arber, W. (1979) Promotion and limitation of genetic exchange. Science 205, 361-365.
  • 4. Lacks, S.A., Ayalew, S., de la Campa, A.G. & Greenberg, B. (2000) Regulation of competence for genetic transformation in Streptococcus pneumoniae: Expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Mol. Microbiol. 35, 1089-1098.
  • 5. Kobayashi, I., Nobusato, A., Kobayashi- Takahashi, N. & Uchiyama, I. (1999) Shaping the genome-restriction-modification systems as mobile genetic elements. Curr. Opin. Genet. Dev. 9, 649-656.
  • 6. Dryden, D.T. (1999) Bacterial DNA methyltranferases; in: S-Adenosylmethionine-dependent Methyltransferases: Structures and Functions (Cheng, X. et al., eds.) pp. 283- 340, World Scientific Inc., Singapore.
  • 7. Murray, N.E. (2000) Type I restriction systems: Sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64, 412-434.
  • 8. Rao, D.N., Saha, S. & Krishnamurthy, V. (2000) ATP-dependent restriction enzymes. Prog. Nucleic Acid Res. Mol. Biol. 64, 1-63.
  • 9. Pingoud, A. and Jeltsch, A. (1997) Recognition and cleavage of DNA by type-II restriction endonucleases. Eur. J. Biochem. 246, 1-22.
  • 10. Pingoud, A. & Jeltsch, A. (2001) Structure and function of type II restriction endonucleases. Nucleic Acids Res. 29, 3705-3727.
  • 11. Pingoud, A., Jeltsch, A., Maxwell, A. & Sherratt, D. (2001) Enzymes that keep DNA under control: Meeting: DNA enzymes: structures and mechanisms. EMBO Rep. 2, 271-276.
  • 12. Davies, G.P., Martin, I., Sturrock, S.S., Cronshaw, A., Murray, N.E. & Dryden, D.T. (1999) On the structure and operation of type I DNA restriction enzymes. J. Mol. Biol. 290, 565-579.
  • 13. Dryden, D.T., Cooper, L.P., Thorpe, P.H. & Byron, O. (1997) The in vitro assembly of the EcoKI type I DNA restriction/modification enzyme and its in vivo implications. Biochemistry, 36, 1065-1076.
  • 14. Ellis, D.J., Dryden, D.T., Berge, T., Edwardson, J.M. & Henderson, R.M. (1999) Direct observation of DNA translocation and cleavage by the EcoKI endonuclease using atomic force microscopy. Nat. Struct. Biol. 6, 15-17.
  • 15. Yuan, R., Hamilton, D.L. & Burckhardt, J. (1980) DNA translocation by the restriction enzyme from E. coli K. Cell 20, 237-244.
  • 16. Berge, T., Ellis, D.J., Dryden, D.T., Edwardson, J.M. & Henderson, R.M. (2000) Translocation-independent dimerization of the EcoKI endonuclease visualized by atomic force microscopy. Biophys. J. 79, 479-484.
  • 17. Boyer, H.W. (1971) DNA restriction and modification mechanisms in bacteria. Annu. Rev. Microbiol. 25, 153-176.
  • 18. Kauc, L. & Piekarowicz, A. (1978) Purification and properties of a new restriction endonuclease from Haemophilus influenzae Rf. Eur. J. Biochem. 92, 417-426.
  • 19. Meisel, A., Mackeldanz, P., Bickle, T.A., Kruger, D.H. & Schroeder, C. (1995) Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis. EMBO J. 14, 2958-2966.
  • 20. Bist, P., Sistla, S., Krishnamurthy, V., Acharya, A., Chandrakala, B. & Rao, D.N. (2001) S-Adenosyl-L-methionine is required for DNA cleavage by type III restriction enzymes. J Mol. Biol. 310, 93-109.
  • 21. Meisel, A., Bickle, T.A., Kruger, D.H. & Schroeder, C. (1992) Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature 355, 467-469.
  • 22. Janscak, P., Sandmeier, U., Szczelkun, M.D. & Bickle, T.A. (2001) Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I. J. Mol. Biol. 306, 417-431.
  • 23. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. & Bourne, P.E. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235-242.
  • 24. Roberts, R.J. & Cheng, X. (1998) Base flipping. Annu. Rev. Biochem. 67, 181-198.
  • 25. Hornby, D.P. & Ford, G.C. (1998) Protein-mediated base flipping. Curr. Opin. Biotechnol. 9, 354-358.
  • 26. Ho, D.K., Wu, J.C., Santi, D.V. & Floss, H.G. (1991) Stereochemical studies of the C-methylation of deoxycytidine catalyzed by HhaI methylase and the N-methylation of deoxyadenosine catalyzed by EcoRI methylase. Arch. Biochem. Biophys. 284, 264-269.
  • 27. Ahmad, I. & Rao, D.N. (1996) Chemistry and biology of DNA methyltransferases. Crit. Rev. Biochem. Mol. Biol. 31, 361-380.
  • 28. Gong, W., O'Gara, M., Blumenthal, R.M. & Cheng, X. (1997) Structure of PvuII DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res. 25, 2702-2715.
  • 29. Vertino, P.M. (1999) Eukaryotic DNA methyltransferases; in: S-Adenosylmethionine- dependent Methyltransferases: Structures and Functions (Cheng, X. et al., eds.) pp. 341-372, World Scientific Inc., Singapore.
  • 30. Winkler, F.K., Banner, D.W., Oefner, C., Tsernoglou, D., Brown, R.S., Heathman, S.P., Bryan, R.K., Martin, P.D., Petratos, K. & Wilson, K.S. (1993) The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 12, 1781-1795.
  • 31. Cheng, X., Balendiran, K., Schildkraut, I. & Anderson, J.E. (1994) Structure of PvuII endonuclease with cognate DNA. EMBO J. 13, 3927-3935.
  • 32. Kim, Y., Grable, J.C., Love, R., Green, P.J. & Rosenberg, J.M. (1990) Refinement of EcoRI endonuclease crystal structure: A revised protein chain tracing. Science 249, 1307-1309.
  • 33. Newman, M., Strzelecka, T., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. (1995) Structure of BamHI endonuclease bound to DNA: Partial folding and unfolding on DNA binding. Science 269, 656-663.
  • 34. Newman, M., Lunnen, K., Wilson, G., Greci, J., Schildkraut, I. & Phillips, S.E. (1998) Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence. EMBO J. 17, 5466-5476.
  • 35. Stankevicius, K., Lubys, A., Timinskas, A., Vaitkevicius, D. & Janulaitis, A. (1998) Cloning and analysis of the four genes coding for Bpu10I restriction-modification enzymes. Nucleic Acids Res. 26, 1084-1091.
  • 36. Hsieh, P.C., Xiao, J.P., O'loane, D. & Xu, S.Y. (2000) Cloning, expression and purification of a thermostable nonhomodimeric restriction enzyme, BslI. J Bacteriol. 182, 949-955.
  • 37. Kruger, D.H., Barcak, G.J., Reuter, M. & Smith, H.O. (1988) EcoRII can be activated to cleave refractory DNA recognition sites. Nucleic Acids Res. 16, 3997-4008.
  • 38. Huai, Q., Colandene, J.D., Chen, Y., Luo, F., Zhao, Y., Topal, M.D. & Ke, H. (2000) Crystal structure of NaeI-an evolutionary bridge between DNA endonuclease and topoisomerase. EMBO J. 19, 3110-3118.
  • 39. Deibert, M., Grazulis, S., Sasnauskas, G., Siksnys, V. & Huber, R. (2000) Structure of the tetrameric restriction endonuclease NgoMIV in complex with cleaved DNA. Nat. Struct. Biol. 7, 792-799.
  • 40. Bilcock, D.T. & Halford, S.E. (1999) DNA restriction dependent on two recognition sites: Activities of the SfiI restriction-modification system in Escherichia coli. Mol. Microbiol. 31, 1243-1254.
  • 41. Szybalski, W., Kim, S.C., Hasan, N. & Podhajska, A.J. (1991) Class-IIS restriction enzymes - a review. Gene 100, 13-26.
  • 42. Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci U.S.A. 95, 10570-10575.
  • 43. Vanamee, E.S., Santagata, S. & Aggarwal, A.K. (2001) FokI requires two specific DNA sites for cleavage. J. Mol. Biol. 309, 69-78.
  • 44. Kim, Y.G. & Chandrasegaran, S. (1994) Chimeric restriction endonuclease. Proc. Natl. Acad. Sci U.S.A. 91, 883-887.
  • 45. Kim, Y.G., Smith, J., Durgesha, M. & Chandrasegaran, S. (1998) Chimeric restriction enzyme: Gal4 fusion to FokI cleavage domain. Biol. Chem. 379, 489-495.
  • 46. Chandrasegaran, S. & Smith, J. (1999) Chimeric restriction enzymes: what is next? Biol. Chem. 380, 841-848.
  • 47. Morgan, R.D., Calvet, C., Demeter, M., Agra, R. & Kong, H. (2000) Characterization of the specific DNA nicking activity of restriction endonuclease N. BstNBI. Biol. Chem. 381, 1123-1125.
  • 48. Higgins, L.S., Besnier, C. & Kong, H. (2001) The nicking endonuclease N. BstNBI is closely related to Type IIs restriction endonucleases MlyI and PleI. Nucleic Acids Res. 29, 2492-2501.
  • 49. Gunn, J.S. & Stein, D.C. (1997) The Neisseria gonorrhoeae S. NgoVIII restriction/modification system: A type IIs system homologous to the Haemophilus parahaemolyticus HphI restriction/modification system. Nucleic Acids Res. 25, 4147-4152.
  • 50. Friedrich, T., Fatemi, M., Gowhar, H., Leismann, O. & Jeltsch, A. (2000) Specificity of DNA binding and methylation by the M. FokI DNA methyltransferase. Biochim. Biophys. Acta 1480, 145-159.
  • 51. Janulaitis, A., Petrusyte, M., Maneliene, Z., Klimasauskas, S. & Butkus, V. (1992) Purification and properties of the Eco57I restriction endonuclease and methylase-prototypes of a new class (type IV). Nucleic Acids Res. 20, 6043-6049.
  • 52. Jurenaite-Urbanaviciene, S., Kazlauskiene, R., Urbelyte, V., Maneliene, Z., Petrusyte, M., Lubys, A. & Janulaitis, A. (2001) Characterization of BseMII, a new type IV restriction-modification system, which recognizes the pentanucleotide sequence 5'-CTCAG(N)(10/8). Nucleic Acids Res. 29, 895-903.
  • 53. Janulaitis, A., Vaisvila, R., Timinskas, A., Klimasauskas, S. & Butkus, V. (1992) Cloning and sequence analysis of the genes coding for Eco57I type IV restriction-modification enzymes. Nucleic Acids Res. 20, 6051-6056.
  • 54. Kong, H. (1998) Analyzing the functional organization of a novel restriction modification system, the BcgI system. J. Mol. Biol. 279, 823-832.
  • 55. Vitor, J.M. & Morgan, R.D. (1995) Two novel restriction endonucleases from Campylobacter jejuni. Gene 157, 109-110.
  • 56. Piekarowicz, A., Golaszewska, M., Sunday, A.O., Siwinska, M. & Stein, D.C. (1999) The HaeIV restriction modification system of Haemophilus aegyptius is encoded by a single polypeptide. J Mol. Biol. 293, 1055-1065.
  • 57. Kong, H. & Smith, C.L. (1897) Does BcgI, a unique restriction endonuclease, require two recognition sites for cleavage? Biol. Chem. 379, 605-609.
  • 58. Gormley, N.A., Bath, A.J. & Halford, S.E. (2000) Reactions of BglI and other type II restriction endonucleases with discontinuous recognition sites. J Biol. Chem. 275, 6928-6936.
  • 59. Jeltsch, A. & Pingoud, A. (1996) Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems. J. Mol. Evol. 42, 91-96.
  • 60. Jeltsch, A., Wenz, C., Wende, W., Selent, U. & Pingoud, A. (1996) Engineering novel restriction endonucleases: Principles and applications. Trends Biotechnol. 14, 235-238.
  • 61. Kovall, R.A. & Matthews, B.W. (1999) Type II restriction endonucleases: Structural, functional and evolutionary relationships. Curr. Opin. Chem. Biol. 3, 578-583.
  • 62. O'Sullivan, D.J., Zagula, K. & Klaenhammer, T.R. (1995) In vivo restriction by LlaI is encoded by three genes, arranged in an operon with llaIM, on the conjugative Lactococcus plasmid pTR2030. J. Bacteriol. 177, 134-143.
  • 63. de la Campa, A.G., Kale, P., Springhorn, S.S. & Lacks, S.A. (1987) Proteins encoded by the DpnII restriction gene cassette. Two methylases and an endonuclease. J. Mol. Biol. 196, 457-469.
  • 64. Merkiene, E., Vilkaitis, G. & Klimasauskas, S. (1998) A pair of single-strand and double-strand DNA cytosine-N4 methyltransferases from Bacillus centrosporus. Biol. Chem. 379, 569-571.
  • 65. Revel, H.R. (1967) Restriction of nonglucosylated T-even bacteriophage: Properties of permissive mutants of Escherichia coli B and K12. Virology 31, 688-701.
  • 66. Dila, D., Sutherland, E., Moran, L., Slatko, B. & Raleigh, E.A. (1990) Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12. J. Bacteriol. 172, 4888-4900.
  • 67. Waite-Rees, P.A., Keating, C.J., Moran, L.S., Slatko, B.E., Hornstra, L.J. & Benner, J.S. (1991) Characterization and expression of the Escherichia coli Mrr restriction system. J Bacteriol. 173, 5207-5219.
  • 68. Lacks, S. & Greenberg, B. (1977) Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J. Mol. Biol. 114, 153-168.
  • 69. Janosi, L., Yonemitsu, H., Hong, H. & Kaji, A. (1994) Molecular cloning and expression of a novel hydroxymethylcytosine-specific restriction enzyme ( PvuRts1I) modulated by glucosylation of DNA. J. Mol. Biol. 242, 45-61.
  • 70. Bickle, T.A. & Kruger, D.H. (1993) Biology of DNA restriction. Microbiol. Rev. 57, 434-450.
  • 71. Jurica, M.S. & Stoddard, B.L. (1999) Homing endonucleases: Structure, function and evolution. Cell Mol. Life Sci. 55, 1304-1326.
  • 72. Gimble, F.S. (2000) Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol. Lett. 185, 99-107.
  • 73. Belfort, M. & Perlman, P.S. (1995) Mechanisms of intron mobility. J. Biol. Chem. 270, 30237-30240.
  • 74. Marinus, M.G. (1996) Methylation of DNA; in Escherichia coli and Salmonella typhimurium (Neidhardt, F.C., ed.) pp. 782-791, ASM Press, Washington DC.
  • 75. Peterson, K.R., Wertman, K.F., Mount, D.W. & Marinus, M.G. (1985) Viability of Escherichia coli K-12 DNA adenine methylase (dam) mutants requires increased expression of specific genes in the SOS regulon. Mol. Gen. Genet. 201, 14-19.
  • 76. Wright, R., Stephens, C. & Shapiro, L. (1997) The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J. Bacteriol. 179, 5869-5877.
  • 77. Gomez-Eichelmann, M.C. & Ramirez- Santos, J. (1993) Methylated cytosine at Dcm (CCATGG) sites in Escherichia coli: Possible function and evolutionary implications. J. Mol. Evol. 37, 11-24.
  • 78. Lieb, M. & Bhagwat, A.S. (1996) Very short patch repair: Reducing the cost of cytosine methylation. Mol. Microbiol. 20, 467-473.
  • 79. Ban, C. & Yang, W. (1998) Structural basis for MutH activation in E.coli mismatch repair and relationship of MutH to restriction endonucleases. EMBO J. 17, 1526-1534.
  • 80. Tsutakawa, S.E., Jingami, H. & Morikawa, K. (1999) Recognition of a TG mismatch: The crystal structure of very short patch repair endonuclease in complex with a DNA duplex. Cell 99, 615-623.
  • 81. Behrens, B., Noyer-Weidner, M., Pawlek, B., Lauster, R., Balganesh, T.S. & Trautner, T.A. (1987) Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages. EMBO J. 6, 1137-1142.
  • 82. Tran-Betcke, A., Behrens, B., Noyer-Weidner, M. & Trautner, T.A. (1986) DNA methyltransferase genes of Bacillus subtilis phages: Comparison of their nucleotide sequences. Gene 42, 89-96.
  • 83. Fuller-Pace, F.V. & Murray, N.E. (1986) Two DNA recognition domains of the specificity polypeptides of a family of type I restriction enzymes. Proc. Natl. Acad. Sci. U.S.A. 83, 9368-9372.
  • 84. Wilke, K., Rauhut, E., Noyer-Weidner, M., Lauster, R., Pawlek, B., Behrens, B. & Trautner, T.A. (1988) Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J. 7, 2601-2609.
  • 85. Lange, C., Jugel, A., Walter, J., Noyer- Weidner, M. & Trautner, T.A. (1991) 'Pseudo' domains in phage-encoded DNA methyltransferases. Nature 352, 645-648.
  • 86. Lange, C., Wild, C. & Trautner, T.A. (1996) Identification of a subdomain within DNA-(cytosine-C5)-methyltransferases responsible for the recognition of the 5' part of their DNA target. EMBO J. 15, 1443-1450.
  • 87. Trautner, T.A., Pawlek, B., Behrens, B. & Willert, J. (1996) Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases. EMBO J. 15, 1434-1442.
  • 88. Mi, S. & Roberts, R.J. (1992) How M. MspI and M. HpaII decide which base to methylate. Nucleic Acids Res. 20, 4811-4816.
  • 89. Pradhan, S. & Roberts, R.J. (2000) Hybrid mouse-prokaryotic DNA (cytosine-5) methyltransferases retain the specificity of the parental C-terminal domain. EMBO J. 19, 2103-2114.
  • 90. Bujnicki, J.M. & Radlinska, M. (1999) Molecular phylogenetics of DNA 5mC-methyltransferases. Acta Microbiol. Pol. 48, 19-33.
  • 91. Gann, A.A., Campbell, A.J., Collins, J.F., Coulson, A.F. & Murray, N.E. (1987) Reassortment of DNA recognition domains and the evolution of new specificities. Mol. Microbiol. 1, 13-22.
  • 92. Kneale, G.G. (1994) A symmetrical model for the domain structure of type I DNA methyltransferases. J. Mol. Biol. 243, 1-5.
  • 93. MacWilliams, M.P. & Bickle, T.A. (1996) Generation of new DNA binding specificity by truncation of the type IC EcoDXXI hsdS gene. EMBO J. 15, 4775-4783.
  • 94. Thorpe, P.H., Ternent, D. & Murray, N.E. (1997) The specificity of StySKI, a type I restriction enzyme, implies a structure with rotational symmetry. Nucleic Acids Res. 25, 1694-1700.
  • 95. Dybvig, K., Sitaraman, R. & French, C.T. (1998) A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. Proc. Natl. Acad. Sci. U.S.A. 95, 13923-13928.
  • 96. Schouler, C., Gautier, M., Ehrlich, S.D. & Chopin, M.C. (1998) Combinational variation of restriction modification specificities in Lactococcus lactis. Mol. Microbiol. 28, 169-178.
  • 97. Malone, T., Blumenthal, R.M. & Cheng, X. (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618-632.
  • 98. Cheng, X., Kumar, S., Posfai, J., Pflugrath, J.W. & Roberts, R.J. (1993) Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 74, 299-307.
  • 99. Reinisch, K.M., Chen, L., Verdine, G.L. & Lipscomb, W.N. (1995) The crystal structure of HaeIII methyltransferase convalently complexed to DNA: An extrahelical cytosine and rearranged base pairing. Cell 82, 143- 153.
  • 100. Labahn, J., Granzin, J., Schluckebier, G., Robinson, D.P., Jack, W.E., Schildkraut, I. & Saenger, W. (1994) Three-dimensional structure of the adenine-specific DNA methyltransferase M. TaqI in complex with the cofactor S- adenosylmethionine. Proc. Natl. Acad. Sci. U.S.A. 91, 10957-10961.
  • 101. Tran, P.H., Korszun, Z.R., Cerritelli, S., Springhorn, S.S. & Lacks, S.A. (1998) Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of Streptococcus pneumoniae bound to S-adenosylmethionine. Structure 6, 1563- 1575.
  • 102. Scavetta, R.D., Thomas, C.B., Walsh, M.A., Szegedi, S., Joachimiak, A., Gumport, R.I. & Churchill, M.E. (2000) Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases. Nucleic Acids Res. 28, 3950-3961.
  • 103. Dryden, D.T., Sturrock, S.S. & Winter, M. (1995) Structural modelling of a type I DNA methyltransferase. Nat. Struct. Biol. 2, 632- 635.
  • 104. O'Neill, M., Dryden, D.T. & Murray, N.E. (1998) Localization of a protein-DNA interface by random mutagenesis. EMBO J. 17, 7118-7127.
  • 105. Bujnicki, J.M. & Radlinska, M. (1999) Molecular evolution of DNA-(cytosine-N4) methyltransferases: Evidence for their polyphyletic origin. Nucleic Acids Res. 27, 4501-4509.
  • 106. Radlinska, M., Bujnicki, J.M. & Piekarowicz, A. (1999) Structural characterization of two tandemly arranged DNA methyltransferase genes from Neisseria gonorrhoeae MS11: N4-cytosine specific M. NgoMXV and nonfunctional 5-cytosine-type M. NgoMorf2P. Proteins 37, 717-728.
  • 107. Radlinska, M. & Bujnicki, J.M. (2001) Cloning of enterohemorrhagic Escherichia coli phage VT-2 Dam methyltransferase. Acta Microbiol. Pol. 50, 161-167.
  • 108. Beck, C., Cranz, S., Solmaz, M., Roth, M. & Jeltsch, A. (2001) How does a DNA interacting enzyme change its specificity during molecular evolution? A site directed mutagenesis study at the DNA binding site of the DNA-(adenine-N6)-methyltransferase EcoRV. Biochemistry 40, 10956-10965.
  • 109. Klimasauskas, S., Kumar, S., Roberts, R.J. & Cheng, X. (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76, 357-369.
  • 110. Goedecke, K., Pignot, M., Goody, R.S., Scheidig, A.J. & Weinhold, E. (2001) Structure of the N6-adenine DNA methyltransferase M. TaqI in complex with DNA and a cofactor analog. Nat. Struct. Biol. 8, 121- 125.
  • 111. Wah, D.A., Hirsch, J.A., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. (1997) Structure of the multimodular endonuclease FokI bound to DNA. Nature 388, 97-100.
  • 112. Wah, D.A., Bitinaite, J., Schildkraut, I. & Aggarwal, A.K. (1998) Structure of FokI has implications for DNA cleavage. Proc. Natl. Acad. Sci U.S.A. 95, 10564-10569.
  • 113. Sapranauskas, R., Sasnauskas, G., Lagunavicius, A., Vilkaitis, G., Lubys, A. & Siksnys, V. (2000) Novel subtype of type IIs restriction enzymes. J Biol. Chem. 275, 30878- 30885.
  • 114. Bujnicki, J.M., Radlinska, M. & Rychlewski, L. (2001) Polyphyletic evolution of type II restriction enzymes revisited: Two independent sources of second-hand folds revealed. Trends Biochem. Sci. 26, 9-11.
  • 115. Kowalski, J.C., Belfort, M., Stapleton, M.A., Holpert, M., Dansereau, J.T., Pietrokovski, S., Baxter, S.M. & Derbyshire, V. (1999) Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: Coincidence of computational and molecular findings. Nucleic Acids Res. 27, 2115-2125.
  • 116. Dixon, M., Fauman, E.B. & Ludwig, M.L. (1999) The black sheep of the family: AdoMet-dependent methyltransferases that do not fit the consensus structural fold; in: S-Adenosylmethionine-dependent Methyltransferases: Structures and Functions (Cheng, X., et al., eds.) pp. 39-54, World Scientific Inc., Singapore.
  • 117. Song, H.K., Sohn, S.H. & Suh, S.W. (1999) Crystal structure of deoxycytidylate hydroxymethylase from bacteriophage T4, a component of the deoxyribonucleoside triphosphate-synthesizing complex. EMBO J. 18, 1104-1113.
  • 118. Bujnicki, J.M. (1999) Comparison of protein structures reveals monophyletic origin of the AdoMet-dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N4-cytosine and N6-adenine DNA methylation. In Silico Biol. 1, 175-182.
  • 119. Lauster, R. (1989) Evolution of type II DNA methyltransferases. A gene duplication model. J. Mol. Biol. 206, 313-321.
  • 120. Jeltsch, A., Christ, F., Fatemi, M. & Roth, M. (1999) On the substrate specificity of DNA methyltransferases. Adenine-N6 DNA methyltransferases also modify cytosine residues at position N4. J. Biol. Chem.274, 19538-19544.
  • 121. Jeltsch, A. (2001) The cytosine N4-methyltransferase M. PvuII also modifies adenine residues. Biol. Chem. 382, 707-710.
  • 122. Matveyev, A.V., Young, K.T., Meng, A. & Elhai, J. (2001) DNA methyltransferases of the Cyanobacterium Anabaena PCC7120. Nucleic Acids Res. 29, 1491-1506.
  • 123. Roth, M. & Jeltsch, A. (2001) Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design. Nucleic Acids Res. 29, 1-8.
  • 124. Posfai, J., Bhagwat, A.S., Posfai, G. & Roberts, R.J. (1989) Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 17, 2421-2435.
  • 125. Klimasauskas, S., Timinskas, A., Menkevicius, S., Butkiene, D., Butkus, V. & Janulaitis, A. (1989) Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: Similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Res. 17, 9823-9832.
  • 126. Kumar, S., Cheng, X., Klimasauskas, S., Mi, S., Posfai, J., Roberts, R.J. & Wilson, G.G. (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 22, 1-10.
  • 127. Bujnicki, J.M. & Radlinska, M. (2001) Cloning and characterization of M. LmoA118I, a novel DNA:m4C methyltransferase from the Listeria monocytogenes phage A118, a close homolog of M. NgoMXV. Acta Microbiol. Pol. 50, 155-160.
  • 128. Piekarowicz, A. & Bujnicki, J.M. (1999) Cloning of the Dam methyltransferase gene from Haemophilus influenzae bacteriophage HP1. Acta Microbiol. Pol. 48, 123-129.
  • 129. Bujnicki, J.M. & Radlinska, M. (1999) Is the HemK family of putative S-adenosylmethionine-dependent methyltransferases a missing zeta subfamily of adenine methyltransferases? A hypothesis. IUBMB Life 48, 247-250.
  • 130. Bujnicki, J.M. (2000) Phylogenomic analysis of 16S rRNA:(guanine-N2) methyltransferases suggests new family members and reveals highly conserved motifs and a domain structure similar to other nucleic acid amino-methyltransferases. FASEB J. 14, 2365-2368.
  • 131. Bujnicki, J.M. & Rychlewski, L. (2000) Divergence and retroconvergence in the evolution of sequence specificity and reaction mechanism of DNA methyltransferases and their relatives; in: Proceedings of the IUBMB Symposium DNA Enzymes: Structures and Mechanisms, Anonymous pp. 61, Bangalore, India.
  • 132. Xu, S.Y., Xiao, J.P., Posfai, J., Maunus, R.E. & Benner, J.S. (1997) Cloning of the BssHII restriction-modification system in Escherichia coli: BssHII methyltransferase contains circularly permuted cytosine-5 methyltransferase motifs. Nucleic Acids Res. 25, 3991-3994.
  • 133. Cao, X., Springer, N.M., Muszynski, M.G., Phillips, R.L., Kaeppler, S. & Jacobsen, S.E. (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl. Acad. Sci. U.S.A. 97, 4979-4984.
  • 134. Bujnicki, J.M. (2000) Homology modelling of the DNA 5mC methyltransferase M. BssHII. is permutation of functional subdomains common to all subfamilies of DNA methyltransferases? Int. J. Biol. Macromol. 27, 195-204.
  • 135. Jeltsch, A. (1999) Circular permutations in the molecular evolution of DNA methyltransferases. J. Mol. Evol. 49, 161-164.
  • 136. Heinemann, U. & Hahn, M. (1995) Circular permutation of polypeptide chains: Implications for protein folding and stability. Prog. Biophys. Mol. Biol. 64, 121-143.
  • 137. Heringa, J. & Taylor, W.R. (1997) Three-dimensional domain duplication, swapping and stealing. Curr. Opin. Struct. Biol. 7, 416-421.
  • 138. Heitman, J. (1993) On the origins, structures and functions of restriction-modification enzymes. Genet. Eng. N.Y. 15, 57-108.
  • 139. Jeltsch, A., Kroger, M. & Pingoud, A. (1995) Evidence for an evolutionary relationship among type-II restriction endonucleases. Gene 160, 7-16.
  • 140. Bujnicki, J.M. (2000) Phylogeny of the restriction endonuclease-like superfamily inferred from comparison of protein structures. J. Mol. Evol. 50, 39-44.
  • 141. Kovall, R.A. & Matthews, B.W. (1998) Structural, functional and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 95, 7893-7897.
  • 142. Bond, C.S., Kvaratskhelia, M., Richard, D., White, M.F. & Hunter, W.N. (2001) Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus. Proc. Natl. Acad. Sci U.S.A. 98, 5509-5514.
  • 143. Nishino, T., Komori, K., Tsuchiya, D., Ishino, Y. & Morikawa, K. (2001) Crystal structure of the Archaeal Holliday junction resolvase Hjc and implications for DNA recognition. Structure 9, 197-204.
  • 144. Hadden, J.M., Convery, M.A., Declais, A.C., Lilley, D.M. & Phillips, S.E. (2001) Crystal structure of the Holliday junction resolving enzyme T7 endonuclease I. Nat. Struct. Biol. 8, 62-67.
  • 145. Hickman, A.B., Li, Y., Mathew, S.V., May, E.W., Craig, N.L. & Dyda, F. (2000) Unexpected structural diversity in DNA recombination: The restriction endonuclease connection. Mol. Cell. 5, 1025-1034.
  • 146. Aravind, L., Walker, D.R. & Koonin, E.V. (1999) Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res. 27, 1223-1242.
  • 147. Aravind, L., Makarova, K.S. & Koonin, E.V. (2000) Holliday junction resolvases and related nucleases: Identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 28, 3417-3432.
  • 148. Kvaratskhelia, M., Wardleworth, B.N., Norman, D.G. & White, M.F. (2000) A conserved nuclease domain in the Archaeal Holliday junction resolving enzyme Hjc. J. Biol. Chem. 275, 25540-25546.
  • 149. Bujnicki, J.M. & Rychlewski, L. (2001) Grouping together highly diverged PD-(D/ E)XK nucleases and identification of novel superfamily members using structure-guided alignment of sequence profiles. J. Mol. Microbiol. Biotechnol.3, 69-72.
  • 150. Bujnicki, J.M. & Rychlewski, L. (2001) Identification of a PD-(D/E)XK-like domain with a novel configuration of the endonuclease active site in the methyl-directed restriction enzyme Mrr and its homologs. Gene 267, 183-191.
  • 151. Bujnicki, J.M. & Rychlewski, L. (2001) The herpesvirus alkaline exonuclease belongs to the restriction endonuclease PD-(D/E)XK superfamily: Insight from molecular modeling and phylogenetic analysis. Virus Genes 22, 219-230.
  • 152. Bujnicki, J.M. & Rychlewski, L. (2001) Unusual evolutionary history of the tRNA splicing endonuclease EndA: Relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases. Protein Sci. 10, 656-660.
  • 153. Li, H., Trotta, C.R. & Abelson, J. (1998) Crystal structure and evolution of a transfer RNA splicing enzyme. Science 280, 279-284.
  • 154. Bujnicki, J.M., Radlinska, M. & Rychlewski, L. (2000) Atomic model of the 5-methylcytosine-specific restriction enzyme McrA reveals an atypical zinc-finger and structural similarity to ββα Me endonucleases. Mol. Microbiol. 37, 1280-1281.
  • 155. Ko, T.P., Liao, C.C., Ku, W.Y., Chak, K.F. & Yuan, H.S. (1999) The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure Fold. Des. 7, 91-102.
  • 156. Bujnicki, J.M., Rotkiewicz, P., Kolinski, A. & Rychlewski, L. (2001) Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG superfamily member, using NMR restraints and Monte Carlo dynamics. Protein Eng. 14, 717-721.
  • 157. Sutherland, E., Coe, L. & Raleigh, E.A. (1992) McrBC: A multisubunit GTP-dependent restriction endonuclease. J. Mol. Biol. 225, 327-348.
  • 158. Janscak, P., MacWilliams, M.P., Sandmeier, U., Nagaraja, V. & Bickle, T.A. (1999) DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes. EMBO J. 18, 2638-2647.
  • 159. Panne, D., Raleigh, E.A. & Bickle, T.A. (1999) The McrBC endonuclease translocates DNA in a reaction dependent on GTP hydrolysis. J Mol. Biol. 290, 49-60.
  • 160. Yuan, R. (1981) Structure and mechanism of multifunctional restriction endonucleases. Annu. Rev. Biochem. 50, 285-319.
  • 161. Gorbalenya, A.E. & Koonin, E.V. (1991) Endonuclease (R) subunits of type-I and type-III restriction-modification enzymes contain a helicase-like domain. FEBS Lett. 291, 277-281.
  • 162. Gorbalenya, A.E. & Koonin, E.V. (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3, 419-429.
  • 163. Hall, M.C. & Matson, S.W. (1999) Helicase motifs: The engine that powers DNA unwinding. Mol. Microbiol. 34, 867-877.
  • 164. Korolev, S., Yao, N., Lohman, T.M., Weber, P.C. & Waksman, G. (1998) Comparisons between the structures of HCV and Rep helicases reveal structural similarities between SF1 and SF2 super-families of helicases. Protein Sci. 7, 605-610.
  • 165. Gast, F.U., Brinkmann, T., Pieper, U., Kruger, T., Noyer-Weidner, M. & Pingoud, A. (1997) The recognition of methylated DNA by the GTP-dependent restriction endonuclease McrBC resides in the N-terminal domain of McrB. Biol Chem. 378, 975-982.
  • 166. Pieper, U., Schweitzer, T., Groll, D.H. & Pingoud, A. (1999) Defining the location and function of domains of McrB by deletion mutagenesis. Biol Chem. 380, 1225-1230.
  • 167. Panne, D., Raleigh, E.A. & Bickle, T.A. (1998) McrBs, a modulator peptide for McrBC activity. EMBO J. 17, 5477-5483.
  • 168. Pieper, U., Schweitzer, T., Groll, D.H., Gast, F.U. & Pingoud, A. (1999) The GTP-binding domain of McrB: more than just a variation on a common theme? J. Mol. Biol. 292, 547-556.
  • 169. Confalonieri, F. & Duguet, M. (1995) A 200-amino acid ATPase module in search of a basic function. BioEssays 17, 639-650.
  • 170. Patel, S. & Latterich, M. (1998) The AAA team: Related ATPases with diverse functions. Trends Cell Biol. 8, 65-71.
  • 171. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation and disassembly of protein complexes. Genome Res. 9, 27-43.
  • 172. Vale, R.D. (2000) AAA proteins. Lords of the ring. J Cell Biol. 150, F13-F19
  • 173. Panne, D., Muller, S.A., Wirtz, S., Engel, A. & Bickle, T.A. (2001) The McrBC restriction endonuclease assembles into a ring structure in the presence of G nucleotides. EMBO J. 20, 3210-3217.
  • 174. Tao, T., Bourne, J.C. & Blumenthal, R.M. (1991) A family of regulatory genes associated with type II restriction-modification systems. J. Bacteriol. 173, 1367-1375.
  • 175. Wintjens, R. & Rooman, M. (1996) Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J. Mol. Biol. 262, 294-313.
  • 176. Rimseliene, R., Vaisvila, R. & Janulaitis, A. (1995) The Eco72IC gene specifies a trans-acting factor which influences expression of both DNA methyltransferase and endonuclease from the Eco72I restriction- modification system. Gene 157, 217-219.
  • 177. Vijesurier, R.M., Carlock, L., Blumenthal, R.M. & Dunbar, J.C. (2000) Role and mechanism of action of C. PvuII, a regulatory protein conserved among restriction-modification systems. J Bacteriol. 182, 477-487.
  • 178. Ives, C.L., Sohail, A. & Brooks, J.E. (1995) The regulatory C proteins from different restriction-modification systems can cross- complement. J. Bacteriol. 177, 6313-6315.
  • 179. Nakayama, Y. & Kobayashi, I. (1998) Restriction-modification gene complexes as selfish gene entities: Roles of a regulatory system in their establishment, maintenance and apoptotic mutual exclusion. Proc. Natl. Acad. Sci. U.S.A. 95, 6442-6447.
  • 180. Campbell, A. (1994) Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol. 48, 193-222.
  • 181. Kobayashi, I. (1998) Selfishness and death: Raison d'etre of restriction, recombination and mitochondria. Trends Genet. 14, 368-374.
  • 182. O'Sullivan, D.J. & Klaenhammer, T.R. (1998) Control of expression of LlaI restriction in Lactococcus lactis. Mol. Microbiol. 27, 1009-1020.
  • 183. Adams, G.M. & Blumenthal, R.M. (1995) Gene pvuIIW: A possible modulator of Pvu II endonuclease subunit association. Gene 157, 193-199.
  • 184. Karreman, C. & de Waard, A. (1988) Cloning and complete nucleotide sequences of the type II restriction-modification genes of Salmonella infantis. J. Bacteriol. 170, 2527- 2532.
  • 185. Brassard, S., Paquet, H. & Roy, P.H. (1995) A transposon-like sequence adjacent to the AccI restriction-modification operon. Gene 157, 69-72.
  • 186. Lee, K.F., Shaw, P.C., Picone, S.J., Wilson, G.G. & Lunnen, K.D. (1998) Sequence comparison of EcoHK31I and EaeI restriction-modification systems suggest an intergenic transfer of genetic material. Biol. Chem. 379, 437-442.
  • 187. Vaisvila, R., Vilkaitis, G. & Janulaitis, A. (1995) Identification of a gene encoding a DNA invertase-like enzyme adjacent to the PaeR7I restriction-modification system. Gene 157, 81-84.
  • 188. Anton, B.P., Heiter, D.F., Benner, J.S., Hess, E.J., Greenough, L., Moran, L.S., Slatko, B.E. & Brooks, J.E. (1997) Cloning and characterization of the BglII restriction-modification system reveals a possible evolutionary footprint. Gene 187, 19-27.
  • 189. Xu, S.Y., Xiao, J.P., Ettwiller, L., Holden, M., Aliotta, J., Poh, C.L., Dalton, M., Robinson, D.P., Petronzio, T.R., Moran, L., Ganatra, M., Ware, J., Slatko, B. & Benner, J. (1998) Cloning and expression of the ApaLI, NspI, NspHI, SacI, Sca I and SapI restriction-modification systems in Escherichia coli. Mol. Gen. Genet. 260, 226-231.
  • 190. Twomey, D.P., McKay, L.L. & O'Sullivan, D.J. (2000) Molecular characterization of the Lactococcus lactis LlaKR2I restriction-modification system and effect of an IS982 element positioned between the restriction and modification genes. J. Bacteriol. 180, 5844- 5854.
  • 191. Stankevicius, K., Povilionis, P., Lubys, A., Menkevicius, S. & Janulaitis, A. (1995) Cloning and characterization of the unusual restriction-modification system comprising two restriction endonucleases and one methyltransferase. Gene 157, 49-53.
  • 192. Roberts, R.J. & Macelis, D. (2001) REBASE-restriction enzymes and methylases. Nucleic Acids Res. 29, 268-269.
  • 193. Kong, H., Lin, L.F., Porter, N., Stickel, S., Byrd, D., Posfai, J. & Roberts, R.J. (2000) Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. Nucleic Acids Res. 28, 3216-3223.
  • 194. Vitkute, J., Stankevicius, K., Tamulaitiene, G., Maneliene, Z., Timinskas, A., Berg, D.E. & Janulaitis, A. (2001) Specificities of eleven different DNA methyltransferases of Helicobacter pylori strain 26695. J Bacteriol. 183, 443-450.
  • 195. Nobusato, A., Uchiyama, I., Ohashi, S. & Kobayashi, I. (2000) Insertion with long target duplication: A mechanism for gene mobility suggested from comparison of two related bacterial genomes. Gene 259, 99-108.
  • 196. Chinen, A., Uchiyama, I. & Kobayashi, I. (2000) Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction-modification genes with large genome polymorphisms. Gene 259, 109-121.
  • 197. Claus, H., Friedrich, A., Frosch, M. & Vogel, U. (2000) Differential distribution of novel restriction-modification systems in clonal lineages of Neisseria meningitidis. J Bacteriol. 182, 1296-1303.
  • 198. Lilley, D.M. & White, M.F. (2000) Resolving the relationships of resolving enzymes. Proc. Natl. Acad. Sci. U.S.A. 97, 9351-9353.
  • 199. Todone, F., Weinzierl, R.O., Brick, P. & Onesti, S. (2000) Crystal structure of RPB5, a universal eukaryotic RNA polymerase subunit and transcription factor interaction target. Proc. Natl. Acad. Sci U.S.A. 97, 6306- 6310.
  • 200. Park, J., Teichmann, S.A., Hubbard, T. & Chothia, C. (1997) Intermediate sequences increase the detection of homology between sequences. J. Mol. Biol. 273, 349-354.
  • 201. Sauder, J.M., Arthur, J.W. & Dunbrack, R.L. (2000) Large-scale comparison of protein sequence alignment algorithms with structure alignments. Proteins 40, 6-22.
  • 202. Lanio, T., Jeltsch, A. & Pingoud, A. (1998) Towards the design of rare cutting restriction endonucleases: Using directed evolution to generate variants of EcoRV differing in their substrate specificity by two orders of magnitude. J. Mol. Biol. 283, 59-69.
  • 203. Schottler, S., Wenz, C., Lanio, T., Jeltsch, A. & Pingoud, A. (1998) Protein engineering of the restriction endonuclease EcoRV-structure-guided design of enzyme variants that recognize the base pairs flanking the recognition site. Eur. J. Biochem. 258, 184-191.
  • 204. Lanio, T., Jeltsch, A. & Pingoud, A. (2000) On the possibilities and limitations of rational protein design to expand the specificity of restriction enzymes: A case study employing EcoRV as the target. Protein Eng. 13, 275-281.
  • 205. Radlinska, M. & Piekarowicz, A. (1998) Cloning and characterization of the gene encoding a new DNA methyltransferase from Neisseria gonorrhoeae. Biol. Chem. 379, 1391- 1395.
  • 206. Miller, M.D., Tanner, J., Alpaugh, M., Benedik, M.J. & Krause, K.L. (1994) 2.1 A structure of Serratia endonuclease suggests a mechanism for binding to double-stranded DNA. Nat. Struct. Biol. 1, 461-468.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv48i4p935kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.