PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 4 | 829-850
Article title

Structure of small G proteins and their regulators.

Content
Title variants
Languages of publication
EN
Abstracts
EN
In recent years small G proteins have become an intensively studied group of regulatory GTP hydrolases involved in cell signaling. More than 100 small G proteins have been identified in eucaryotes from protozoan to human. The small G protein superfamily includes Ras, Rho Rab, Rac, Sar1/Arf and Ran homologs, which take part in numerous and diverse cellular processes, such as gene expression, cytoskeleton reorganization, microtubule organization, and vesicular and nuclear transport. These proteins share a common structural core, described as the G domain, and significant sequence similarity. In this paper we review the available data on G domain structure, together with a detailed analysis of the mechanism of action. We also present small G protein regulators: GTPase activating proteins that bind to a catalytic G domain and increase its low intrinsic hydrolase activity, GTPase dissociation inhibitors that stabilize the GDP-bound, inactive state of G proteins, and guanine nucleotide exchange factors that accelerate nucleotide exchange in response to cellular signals. Additionally, in this paper we describe some aspects of small G protein interactions with downstream effectors.
Publisher

Year
Volume
48
Issue
4
Pages
829-850
Physical description
Dates
published
2001
accepted
2001-11-27
received
2001-11-6
Contributors
author
  • Institute of Biochemistry and Molecular Biology, University of Wrocław, Wrocław, Poland
author
  • Institute of Biochemistry and Molecular Biology, University of Wrocław, Wrocław, Poland
  • Institute of Biochemistry and Molecular Biology, University of Wrocław, Wrocław, Poland
References
  • 1. Bourne, H.R., Sanders, D.A. & McCormick, F. (1990) The GTPase superfamily: A conserved switch for diverse cell functions. Nature 348, 125-132.
  • 2. Bourne, H.R., Sanders, D.A. & McCormick, F. (1991) The GTPase superfamily: A conserved structure and molecular mechanism. Nature 349, 117-127.
  • 3. Takai, Y., Sasaki, T. & Matozaki, T. (2001) Small GTP-binding proteins. Physiol Rev 81, 153-208.
  • 4. Valencia, A., Chardin, P., Wittinghofer, A. & Sander, C. (1991) The ras protein family: Evolutionary tree and role of conserved amino acids. Biochemistry 30, 4637-4648.
  • 5. Casey, P.J., Solski, P.A., Der, C.J. & Buss, J.E. (1989) p21ras is modified by a farnesyl isopre noid. Proc. Natl. Acad. Sci. U.S.A. 86, 8323-8327.
  • 6. Fujiyama, A. & Tamanoi, F. (1990) RAS2 protein of Saccharomyces cerevisiae undergoes removal of methionine at N terminus and removal of three amino acids at C terminus. J.Biol. Chem 265, 3362-3368.
  • 7. Gutierrez, L., Magee, A.I., Marshall, C.J. & Hancock, J.F. (1989) Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J 8, 1093-1098.
  • 8. Schafer, W.R., Kim, R., Sterne, R., Thorner, J., Kim, S.H. & Rine, J. (1989) Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science 245, 379-385.
  • 9. Hancock, J.F., Magee, A.I., Childs, J.E. & Marshall, C.J. (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167-1177.
  • 10. Kohl, N.E., Omer, C.A., Conner, M.W., Anthony, N.J., Davide, J.P., deSolms, S.J., Giuliani, E.A., Gomez, R.P., Graham, S.L., Hamilton, K. et al. (1995) Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat. Med 1, 792-797.
  • 11. Dever, T.E., Glynias, M.J. & Merrick, W.C. (1987) GTP-binding domain: Three consensus sequence elements with distinct spacing. Proc. Natl. Acad. Sci. U.S.A. 84, 1814-1818.
  • 12. Jurnak, F. (1985) Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230, 32-36.
  • 13. la Cour, T.F., Nyborg, J., Thirup, S. & Clark, B.F. (1985) Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J 4, 2385-2388.
  • 14. Gilman, A.G. (1987) G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem 56, 615-649.
  • 15. Walker, J.E., Saraste, M., Runswick, M.J. & Gay, N.J. (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945-951.
  • 16. Sprang, S.R. (1997) G protein mechanisms: Insights from structural analysis. Annu. Rev. Biochem 66, 639-678.
  • 17. Spoerner, M., Herrmann, C., Vetter, I.R., Kalbitzer, H.R. & Wittinghofer, A. (2001) Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc. Natl. Acad. Sci. U.S.A. 98, 4944-4949.
  • 18. Geyer, M., Schweins, T., Herrmann, C., Prisner, T., Wittinghofer, A. & Kalbitzer, H.R. (1996) Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 35, 10308-10320.
  • 19. Zhang, J. & Matthews, C.R. (1998) The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) protein. Biochemistry 37, 14891-14899.
  • 20. Zhang, J. & Matthews, C.R. (1998) Ligand binding is the principal determinant of stability for the p21(H)-ras protein. Biochemistry 37, 14881-14890.
  • 21. Ihara, K., Muraguchi, S., Kato, M., Shimizu, T., Shirakawa, M., Kuroda, S., Kaibuchi, K. & Hakoshima, T. (1998) Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem 273, 9656-9666.
  • 22. Amor, J.C., Harrison, D.H., Kahn, R.A. & Ringe, D. (1994) Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704-708.
  • 23. Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. (1995) Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378-381.
  • 24. Kjeldgaard, M., Nyborg, J. & Clark, B.F.C. (1996) The GTP binding motif: Variations on a theme. FASEB J 10, 1347-1368.
  • 25. John, J., Rensland, H., Schlichting, I., Vetter, I., Borasio, G.D., Goody, R.S. & Wittinghofer, A. (1993) Kinetic and structural analysis of the Mg2+ -binding site of the guanine nucleotide-binding protein p21H-ras. J. Biol. Chem 268, 923-929.
  • 26. Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. & Wittinghofer, A. (1997) The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338.
  • 27. Wei, Y., Zhang, Y., Liu, X., Minor, W., Nakamoto, R.K., Somlyo, A.V., Somlyo, A.P. & Derewenda, Z.S. (1997) Crystal structure of RhoA-GDP and its functional implications. Nat. Struct. Biol 4, 699-703.
  • 28. Feuerstein, J., Kalbitzer, H.R., John, J., Goody, R.S. & Wittinghofer, A. (1987) Characterisation of the metal-ion-GDP complex at the active sites of transforming and nontransforming p21 proteins by observation of the 17O-Mn superhyperfine coupling and by kinetic methods. Eur. J. Biochem 162, 49-55.
  • 29. John, J., Sohmen, R., Feuerstein, J., Linke, R., Wittinghofer, A. & Goody, R.S. (1990) Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29, 6058-6065.
  • 30. Denker, B.M., Boutin, P.M. & Neer, E.J. (1995) Interactions between the amino- and carboxyl-terminal regions of G alpha subunits: Analysis of mutated G alpha o/G alpha i2 chimeras. Biochemistry 34, 5544-5553.
  • 31. Zhong, J.M., Chen-Hwang, M.C. & Hwang, Y.W. (1995) Switching nucleotide specificity of Ha-Ras p21 by a single amino acid substitution at aspartate 119. J. Biol. Chem 270, 10002-10007.
  • 32. Schmidt, G., Lenzen, C., Simon, I., Deuter, R., Cool, R.H., Goody, R.S. & Wittinghofer, A. (1996) Biochemical and biological consequences of changing the specificity of p21ras from guanosine to xanthosine nucleotides. Oncogene 12, 87-96.
  • 33. Weijland, A., Parlato, G. & Parmeggiani, A. (1994) Elongation factor Tu D138N, a mutant with modified substrate specificity, as a tool to study energy consumption in protein biosynthesis. Biochemistry 33, 10711-10717.
  • 34. Scheidig, A.J., Franken, S.M., Corrie, J.E., Reid, G.P., Wittinghofer, A., Pai, E.F. & Goody, R.S. (1995) X-ray crystal structure analysis of the catalytic domain of the oncogene product p21H-ras complexed with caged GTP and mant dGppNHp. J. Mol. Biol 253, 132-150.
  • 35. Berghuis, A.M., Lee, E., Raw, A.S., Gilman, A.G. & Sprang, S.R. (1996) Structure of the GDP-Pi complex of Gly203Ala Giα:1A mimic of the ternary complex of Gα-catalyzed GTP hydrolysis. Structure 4, 1277-1290.
  • 36. Frech, M., Darden, T.A., Pedersen, L.G., Foley, C.K., Charifson, P.S., Anderson, M.W. & Wittinghofer, A. (1994) Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: An experimental and theoretical study. Biochemistry 33, 3237-3244.
  • 37. Schweins, T., Geyer, M., Scheffzek, K., Warshel, A., Kalbitzer, H.R. & Wittinghofer, A. (1995) Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nat. Struct. Biol 2, 36-44.
  • 38. Schweins, T., Scheffzek, K., Assheuer, R. & Wittinghofer, A. (1997) The role of the metal ion in the p21ras catalysed GTP-hydrolysis: Mn2+ versus Mg2+. J. Mol. Biol 266, 847-856.
  • 39. Kosloff, M. & Selinger, Z. (2001) Substrate assisted catalysis - application to G proteins. Trends Biochem. Sci 26, 161-166.
  • 40. Schweins, T. & Warshel, A. (1996) Mechanistic analysis of the relationships in p21ras and related systems. Biochemistry 35, 14232-14243.
  • 41. Maegley, K.A., Admiral, S.J., Herschlag, D. (1996) Ras-catalyzed hydrolysis of GTP: A new perspective from model studies. Proc. Natl. Acad. Sci. U.S.A. 93, 8160-8166.
  • 42. Tesmer, J.J.G., Berman, D.M., Gilman, A.G. & Sprang, S.R. (1997) Structure of RGS4 bound to AIF4- -activated Giα1: Stabilization of the transition state for GTP hydrolysis. Cell 89, 251-261.
  • 43. Resat, H., Straatsma, T.P., Dixon, D.A. & Miller, J.H. (2001) The arginine finger of RasGAP helps Gln-61 align the nucleophilic water in GAP-stimulate hydrolysis of GTP. Proc. Natl. Acad. Sci. U.S.A. 98, 6033-6038.
  • 44. Sondek, J., Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. (1994) GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin alpha-GDP-AIF-4. Nature 372, 276-279.
  • 45. Cheng, H., Sukal, S., Callender, R. & Leyh, T.S. (2001) Gamma-phosphate protonation and pH-dependent unfolding of the Ras GTP Mg2+ complex: A vibrational spectroscopy study. J. Biol. Chem 276, 9931-9935.
  • 46. Allin, C. & Gerwert, K. (2001) Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy. Biochemistry 40, 3037-3046.
  • 47. Coleman, D.E., Berghuis, A.M., Lee, E., Linder, M.E., Gilman, A.G. & Sprang, S.R. (1994) Structures of active conformations of Gialpha1 and the mechanism of GTP hydrolysis. Science 265, 1405-1412
  • 48. Wall, M.A., Coleman, D.E., Lee, E., Iniguez- Lluhi, J.A., Posner, B.A., Gilman, A.G. & Sprang, S.R. (1995) The structure of the G protein heterotrimer G alpha 1 beta 1 gamma 2. Cell 83, 1047-1058.
  • 49. Aspenstrom, P. (1999) Effectors for the Rho GTPases. Curr. Opin. Cell. Biol 11, 95-102.
  • 50. Maesaki, R., Shimizu, T., Ihara, K., Kuroda, S., Kaibuchi, K. & Hakoshima, T. (1999) Biochemical and crystallographic characterization of a Rho effector domain of the protein serine/threonine kinase N in a complex with RhoA. J. Struct. Biol 126, 166-170.
  • 51. Sung, Y.J., Carter, M., Zhong, J.M. & Hwang, Y.W. (1995) Mutagenesis of the H-ras p21 at glycine-60 residue disrupts GTP-induced conformational change. Biochemistry 34, 3470-3477.
  • 52. Bauer, B., Mirey, G., Vetter, I.R., Garcia-Ranea, J.A., Valencia, A., Wittinghofer, A., Camonis, J.H. & Cool, R.H. (1999) Effector recognition by the small GTP-binding proteins Ras and Ral. J. Biol. Chem 274, 17763-17770.
  • 53. Herrmann, C., Horn, G., Spaargaren, M. & Wittinghofer, A. (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem 271, 6794-6800.
  • 54. Nassar, N., Horn, G., Herrmann, C., Block, C., Janknecht, R. & Wittinghofer, A. (1996) Ras/Rap effector specificity determined by charge reversal. Nat. Struct. Biol 3, 723-729.
  • 55. Geyer, M., Herrmann, C., Wohlgemuth, S., Wittinghofer, A. & Kalbitzer, H.R. (1997) Structure of the Ras-binding domain of Ral guanine-nucleotide exchange factor: Implications for Ras binding and signaling. Nat. Struct. Biol 4, 694-699.
  • 56. Pacold, M.E., Suire, S., Perisic, O., Lara-Gonzalez, S., Davis, C.T., Walker, E.H., Hawkins, P.T., Stephens, L., Eccleston, J.F. & Williams, R.L. (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103, 931-943.
  • 57. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F. & Wittinghofer, A. (1995) The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554-560.
  • 58. Mott, H.R., Carpenter, J.W., Zhong, S., Ghosh, S., Bell, R.M., Campbell, S.L. (1996) The solution structure of the Raf-1 cysteine- rich domain: A novel Ras and phospholipid binding site. Proc. Natl. Acad. Sci. U.S.A. 93, 8312-8317.
  • 59. Freed, E., Symons, M., MacDonald, S.G., McCormick, F. & Ruggieri, R. (1994) Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265, 1713-1716.
  • 60.Therrien, M., Chang, H.C., Solomon, N.M., Karim, F.D., Wassarman, D.A. & Rubin, G.M. (1995) KSR, a novel protein kinase required for RAS signal transduction. Cell 83, 879-888.
  • 61. Therrien, M., Michaud, N.R., Rubin, G.M. & Morrison, D.K. (1996) KSR modulates signal propagation within the MAPK cascade. Genes Dev 10, 2684-2695.
  • 62. Therrien, M., Wong, A.M. & Rubin, G.M. (1998) CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95, 343-353.
  • 63. Bishop, A.L. & Hall, A. (2000) Rho GTPases and their effector proteins. Biochem. J 348, 241-255.
  • 64. Campbell, S.L., Khosravi-Far, R., Rossman, K.L., Clark, G.J. & Der, C.J. (1998) Increasing complexity of Ras signaling. Oncogene 17, 1395-1413.
  • 65. Bar-Sagi, D. & Hall, A. (2000) Ras and Rho GTPases: A family reunion. Cell 103, 227-238.
  • 66. Schalk, I., Zeng, K., Wu, S.K., Stura, E.A., Matteson, J., Huang, M., Tandon, A., Wilson, I.A. & Balch, W.E. (1996) Structure and mutational analysis of Rab GDP-dissociation inhibitor. Nature 381, 42-48.
  • 67. Gosser, Y.Q., Nomanbhoy, T.K., Aghazadeh, B., Manor, D., Combs, C., Cerione, R.A. & Rosen, M.K. (1997) C-terminal binding domain of RhoGDP-dissociation inhibitor directs N-terminal inhibitorypeptide to GTPases. Nature 387, 814-819.
  • 68. Scheffzek, K., Stephan, I., Jensen, O.N., Illenberger, D. & Gierschik, P. (2000) The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nat. Struct. Biol 7, 122-126.
  • 69. Keep, N.H., Barnes, M., Barsukov, I., Badii, R., Lian, L.Y., Segal, A.W., Moody, P.C.E. & Roberts, G.C.K. (1997) A modulator of rho family G proteins, RhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623-633.
  • 70.Lian, L.Y., Barsukov, I., Golovanov, A.P., Hawkins, D.I., Badii, R., Sze, K.H., Keep, N.H., Bokoch, G.M. & Roberts, G.C. (2000) Mapping the binding site for the GTP-binding protein Rac-1 on itsinhibitor RhoGDI-1. Structure Fold. Des 8, 47-55.
  • 71. Longenecker, K., Read, P., Derewenda, U., Dauter, Z., Liu, X., Garrard, S., Walker, L., Somlyo, A.V., Nakamoto, R.K., Somlyo, A.P. & Derewenda, Z.S. (1999) How RhoGDI binds Rho. Acta Crystallogr. D Biol. Crystallogr 55, 1503-1515.
  • 72. Danley, D.E., Chuang, T.H. & Bokoch, G.M. (1996) Defective Rho GTPase regulation by IL-1 beta-converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor. J. Immunol 157, 500-503.
  • 73. Nomanbhoy, T.K. & Cerione, R. (1996) Characterization of the interaction between RhoGDI and Cdc42Hs using fluorescence spectroscopy. J. Biol. Chem 271, 10004-10009.
  • 74. Scheffzek, K., Lautwein, A., Kabsch, W., Ahmadian, M.R. & Wittinghofer, A. (1996) Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Nature 384, 591-596.
  • 75. Rittinger, K., Walker, P.A., Eccleston, J.F., Smerdon, S.J. & Gambin, S.J. (1997) Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition state analog. Nature 389, 758-762.
  • 76. Barrett, T., Xiao, B., Dodson, E.J., Ludbrook, S.B., Nurmahomed, K., Ganbin, S.J., Smerdon, S.J. & Eccleston, J.F. (1997) The structure of the GTPase-activating domain form p50rhoGAP. Nature 385, 458-461.
  • 77. Souchet, M., Poupon, A., Callebaut, I., Leger, I., Mornon, J., Bril, A. & Calmels, T.P. (2000) Functional specificity conferred by the unique plasticity of fully alpha-helical Ras and Rho GAPs. FEBS Lett 477, 99-105.
  • 78. Longenecker, K.L., Zhang, B., Derewenda, U., Sheffield, P.J., Dauter, Z., Parsons, J.T., Zheng, Y. & Derewenda, Z.S. (2000) Structure of the BH domain from Graf and its implications for Rho GTPase recognition. J. Biol. Chem 275, 38605-38610.
  • 79. Drugan, J.K., Rogers-Graham, K., Gilmer, T., Campbell, S. & Clark, G.J. (2000) The Ras/p120 GTPase-activating protein (GAP) interaction is regulated by the p120 GAP pleckstrin homology domain. J. Biol. Chem 275, 35021-35027.
  • 80.Rittinger, K., Walker, P.A., Eccleston, J.F., Nurmahomed, K., Laue, E., Owen, D., Ganbin, S.J. & Smerdon, S.J. (1997) Crystal structure of a small G protein in complex with the GTPase-activating protein RhoGAP. Nature 388, 693-697.
  • 81. Renault, L., Kuhlmann, J., Henkel, A. & Wittinghofer, A. (2001) Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105, 245-255.
  • 82. Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. & Kuriyan, J. (1998) The structural basis of the activation of Ras by Sos. Nature 394, 337-343.
  • 83. Cherfils, J., Menetrey, J., Mathieu, M., Le Bras, G., Robineau, S., Beraud-Dufour, S., Antonny, B. & Chardin, P. (1998) Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392, 101-105.
  • 84. Yu, H. & Schreiber, S.L. (1995) Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature 376, 788-791.
  • 85. Hart, M.J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W.D., Gilman, A.G., Sternweis, P.C. & Bollag, G. (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13.Science 280, 2112-2114.
  • 86. Hart, M.J., Roscoe, W. & Bollag, G. (2000) Activation of Rho GEF activity by G alpha 13. Methods Enzymol 325, 61-71.
  • 87. Fukuhara, S., Murga, C., Zohar, M., Igishi, T. & Gutkind, J.S. (1999) A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem 274, 5868-5879.
  • 88. Hart, M.J., Eva, A., Zangrilli, D., Aaronson, S.A., Evans, T., Cerione, R.A. & Zheng, Y. (1994) Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem 269, 62-65.
  • 89. Zheng, Y., Fischer, D.J., Santos, M.F., Tigyi, G., Pasteris, N.G., Gorski, J.L. & Xu, Y. (1996) The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J. Biol. Chem 271, 33169-33172.
  • 90. Steven, R., Kubiseski, T.J., Zheng, H., Kulkarni, S., Mancillas, J., Ruiz, Morales, A., Hogue, C.W., Pawson, T. & Culotti, J. (1998) UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785-795.
  • 91. Horii, Y., Beeler, J.F., Sakaguchi, K., Tachibana, M. & Miki, T. (1994) A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J 13, 4776-4786.
  • 92. de Bruyn, K.M., de Rooij, J., Wolthuis, R.M., Rehmann, H., Wesenbeek, J., Cool, R.H., Wittinghofer, A.H. & Bos, J.L. (2000) RalGEF2, a pleckstrin homology domain containing guanine nucleotideexchange factor for Ral. J. Biol. Chem 275, 29761-29766.
  • 93. Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. (1993) The PH domain: A common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci 18, 343-348.
  • 94. Whitehead, I.P., Campbell, S., Rossman, K.L. & Der, C.J. (1997) Dbl family proteins. Biochim. Biophys. Acta 1332, F1-F23.
  • 95. Pawson, T. (1995) Protein modules and signalling networks. Nature 373, 573-580.
  • 96. Aghazadeh, B., Zhu, K., Kubiseski, T.J., Liu, G.A., Pawson, T., Zheng, Y. & Rosen, M.K. (1998) Structure and mutagenesis of the Dbl homology domain. Nat. Struct. Biol 5, 1098-1107.
  • 97. Soisson, S.M., Nimnual, A.S., Uy, M., Bar-Sagi, D. & Kuriyan, J. (1998) Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell 95, 259-268.
  • 98. Zheng, J., Chen, R.H., Corblan-Garcia, S., Cahill, S.M., Bar-Sagi, D. & Cowburn, D. (1997) The solution structure of the pleckstrin homology domain of human SOS1. A possible structural role for the sequential association of diffuse B cell lymphoma and pleckstrin homology domains. J. Biol. Chem 272, 30340-30344.
  • 99. Zhang, B., Zhang, Y., Wang, Z. & Zheng, Y. (2000) The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem 275, 25299-25307.
  • 100. Cherfils, J. & Chardin, P. (1999) GEFs: Structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci 24, 306-311.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv48i4p829kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.