PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 4 | 1043-1049
Article title

Anaerobic growth of Saccharomyces cerevisiae alleviates the lethal effect of phosphotyrosyl phosphatase activators depletion.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Saccharomyces cerevisiae homologues of phosphotyrosyl phosphatase activator(PTPA) are encoded by RRD1 and RRD2, genes whose combined deletion is synthetic lethal. Previously we have shown that the lethality of rrd1,2Δ can be suppressed by increasing the osmolarity of the medium. Here we show that the lethality of rrd1,2Δ is also suppressed under oxygen-limited conditions. The absence of respiration per se is not responsible for the suppression since elimination of the mitochondrial genome or a block in heme biosynthesis fail to rescue the rrd1,2Δ double mutation.
Year
Volume
48
Issue
4
Pages
1043-1049
Physical description
Dates
published
2001
received
2001-10-15
accepted
2001-12-6
References
  • 1. Van Hoof, C., Cayla, X., Bosch, M., Merlevede, W. & Goris, J. (1994) The phosphotyrosyl phosphatase activator of protein phosphatase 2A. A novel purification method, immunological and enzymatic characterization. Eur. J. Biochem. 226, 899-907.
  • 2. Van Hoof, C., Janssens, V., Dinishiotu, A., Merlevede, W. & Goris, J. (1998) Functional analysis of conserved domains in the phosphotyrosyl phosphatase activator. Molecular cloning of the homologues from Drosophila melanogaster and Saccharomyces cerevisiae. Biochemistry 37, 12899-908.
  • 3. Rempola, B., Kaniak, A., Migdalski, A., Rytka, J., Slonimski, P.P. & di Rago, J.-P. (2000) Functional analysis of RRD1 (YIL153w) and RRD2 (YPL152w), which encode two putative activators of the phosphotyrosyl phosphatase activity of PP2A in Saccharomyces cerevisiae. Mol. Gen. Genet. 262, 1081-92.
  • 4. Ramotar, D., Belanger, E., Brodeur, I., Masson, J.Y. & Drobetsky, E.A. (1998) A yeast homologue of the human phosphotyrosyl phosphatase activator PTPA is implicated in protection against oxidative DNA damage induced by the model carcinogen 4-nitroquinoline 1-oxide. J. Biol. Chem. 273, 21489-21496.
  • 5. Van Hoof, C., Janssens, V., De Baere, I., de Winde, J.H., Winderickx, J., Dumortier, F., Thevelein, J.M., Merlevede, W. & Goris, J. (2000) The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle. J. Mol. Biol. 302, 103-120.
  • 6. Van Hoof, C., Janssens, V., De Baere, I., Stark, M.J., de Winde, J.H., Winderickx, J., Thevelein, J.M., Merlevede, W. & Goris, J. (2001) The Saccharomyces cerevisiae phosphotyrosyl phosphatase activator proteins are required for a subset of the functions disrupted by protein phosphatase 2A mutations. Exp. Cell. Res. 264, 372-387.
  • 7. Mitchell, D.A. & Sprague, G.F., Jr. (2001) The phosphotyrosyl phosphatase activator, Ncs1p (Rrd1p), functions with Cla4p to regulate the G(2)/M transition in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 488-500.
  • 8. Rep, M., Krantz, M., Thevelein, J.M. & Hohmann, S. (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275, 8290-300.
  • 9. Igual, J.C., Johnson, A.L. & Johnston., L.H. (1996) Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J. 15, 5001-5013.
  • 10. Rose, M.D., Winston, F. & Hieter, P. (1991) Methods in Yeast Genetics — A Laboratory Manual. Cold Spring Harbor Laboratory Press.
  • 11. Lodi, T. & Guiard, B. (1991) Complex transcriptional regulation of the Saccharomyces cerevisiae CYB2 gene encoding cytochrome b2: CYP1( HAP1) activator binds to the CYB2 upstream activation site UAS1-B2. Mol. Cell. Biol. 11, 3762-3772.
  • 12. Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M. & Adler, L. (1997) The two isoenzymes for yeast NAD+dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16, 2179-2187.
  • 13. Chen, D.-C., Yang, B.-C. & Tsong-Teh, K. (1992) One-step transformation of yeast in stationary phase. Curr. Genet. 21, 83-84.
  • 14. Kwast, K.E., Burke, P.V. & Poyton, R.O. (1998) Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J. Exp. Biol. 201, 1177-1195.
  • 15. Parks, L.W. & Casey, W.M. (1995) Physiological implications of sterol biosynthesis in yeast. Annu. Rev. Microbiol. 49, 95-116.
  • 16. Ladeveze, V., Marcireau, C., Delourme, D. & Karst, F. (1993) General resistance to sterol biosynthesis inhibitors in Saccharomyces cerevisiae. Lipids 28, 907-912.
  • 17. ter Linde, J.J., Liang, H., Davis, R.W., Steensma, H.Y, van Dijken, J.P. & Pronk, J.T. (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J. Bacteriol. 181, 7409-7413.
  • 18. Abramova, N., Sertil, O., Mehta, S. & Lowry, C.V. (2001) Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J. Bacteriol. 183, 2881-2887.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv48i4p1043kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.