PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 4 | 1003-1023
Article title

Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems.

Content
Title variants
Languages of publication
EN
Abstracts
EN
The stable inheritance of bacterial plasmids is achieved by a number of different mechanisms. Among them are resolution of plasmid oligomers into monomers, active plasmid partitioning into dividing cells and selective killing of plasmid-free segregants. A special focus is given to the last mechanism. It involves a stable toxin and an unstable antidote. The antidotes neutralize their cognate toxins or prevent their synthesis. The different decay rates of the toxins and the antidotes underlie molecular mechanisms of toxin activation in plasmid-free cells. By eliminating of plasmid-free cells from the population of plasmid-bearing ones the toxin-antidote couples therefore act as plasmid addiction systems.
Publisher

Year
Volume
48
Issue
4
Pages
1003-1023
Physical description
Dates
published
2001
accepted
2001-11-24
received
2001-11-5
Contributors
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences
References
  • Abeles, A.L., Friedman, S.A. & Austin, S.J. (1985) Partition of unit-copy miniplasmids to daughter cells. III. The DNA sequence and functional organization of the P1 partition region. J. Mol. Biol. 185, 261-272.
  • Aizenman, E., Engelberg-Kulka, H. & Glaser, G. (1996) An Escherichia coli chromosomal addiction module regulated by guanosine 3',5'-bispyrophosphate: A model for programmed bacterial cell death. Proc. Natl. Acad. Sci. U.S.A 93, 6059-6063.
  • Alonso, J.C., Weise, F. & Rojo, F. (1995) The Bacillus subtilis histone-like protein Hbsu is required for DNA resolution and DNA inversion mediated by the beta recombinase of plasmid pSM19035. J. Biol. Chem. 270, 2938-2945.
  • Austin, S., Ziese, M. & Sternberg, N. (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25, 729-736.
  • Bahassi, E.M., Salmon, M.A., Van Melderen, L., Bernard, P. & Couturier, M. (1995) F plasmid CcdB killer protein: ccdB gene mutants coding for non-cytotoxic proteins which retain their regulatory functions. Mol. Microbiol. 15, 1031-1037.
  • Bahassi, E.M., O’Dea, M.H., Allali, N., Messens, J., Gellert, M. & Couturier, M. (1999) Interactions of CcdB with DNA gyrase. Inactivation of GyrA, poisoning of the gyrase-DNA complex, and the antidote action of CcdA. J. Biol. Chem. 274, 10936-10944.
  • Bech, F.W., Jorgensen, S.T., Diderichsen, B. & Karlstrom, O.H. (1985) Sequence of the relB transcription unit from Escherichia coli and identification of the relB gene. EMBO J. 4, 1059-1066.
  • Berger, J.M., Gamblin, S.J., Harrison, S.C. & Wang, J.C. (1996) Structure and mechanism of DNA topoisomerase II. Nature 379, 225-232.
  • Bernard, P. & Couturier, M. (1992) Cell killing by the F plasmid CcdB protein involves poisoning of DNA- topoisomerase II complexes. J. Mol. Biol. 226, 735-745.
  • Bernard, P., Kezdy, K.E., Van Melderen, L., Steyaert, J., Wyns, L., Pato, M.L., Higgins, P.N. & Couturier, M.(1993) The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J. Mol. Biol. 234, 534-541.
  • Bex, F., Karoui, H., Rokeach, L., Dreze, P., Garcia, L. & Couturier, M. (1983) Mini-F encoded proteins: identification of a new 10.5 kilodalton species. EMBO J. 2, 1853-1861.
  • Bignell, C.R., Haines, A.S., Khare, D. & Thomas, C.M.(1999) Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol. Microbiol. 34, 205-216.
  • Boe, L., Gerdes, K. & Molin, S.(1987) Effects of genes exerting growth inhibition and plasmid stability on plasmid maintenance. J. Bacteriol. 169, 4646-4650.
  • Bravo, A., de Torrontegui, G. & Diaz, R.(1987) Identification of components of a new stability system of plasmid R1, ParD, that is close to the origin of replication of this plasmid. Mol. Gen. Genet. 210, 101-110.
  • Carlson, C.R. & Kolsto, A.B.(1994) A small (2.4 Mb) Bacillus cereus chromosome corresponds to a conserved region of a larger (5.3 Mb) Bacillus cereus chromosome. Mol. Microbiol. 13, 161-169.
  • Couturier, M., Bahassi, E. & Van Melderen, L.(1998) Bacterial death by DNA gyrase poisoning. Trends Microbiol. 6, 269-275.
  • Davis, M. A., Martin, K.A. & Austin, S.J.(1992) Biochemical activities of the parA partition protein of the P1 plasmid. Mol. Microbiol. 6, 1141-1147.
  • Davis, M.A., Radnedge, L., Martin, K.A., Hayes, F., Youngren, B. & Austin, S.J.(1996) The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol. Microbiol. 21, 1029-1036.
  • de Feyter, R., Wallace, C. & Lane, D.(1989) Autoregulation of the ccd operon in the F plasmid. Mol. Gen. Genet. 218, 481-486.
  • de la Hoz, A.B., Ayora, S., Sitkiewicz, I., Fernandez, S., Pankiewicz, R., Alonso, J.C. & Ceglowski, P.(2000) Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc. Natl. Acad. Sci. U.S.A 97, 728-733.
  • Easter, C.L., Sobecky, P.A. & Helinski, D.R.(1997) Contribution of different segments of the par region to stable maintenance of the broad- host-range plasmid RK2. J. Bacteriol. 179, 6472-6479.
  • Erdmann, N., Petroff, T. & Funnell, B.E.(1999) Intracellular localization of P1 ParB protein depends on ParA and parS. Proc. Natl. Acad. Sci. U.S.A 96, 14905-14910.
  • Figurski, D.H., Pohlman, R.F., Bechhofer, D.H., Prince, A.S. & Kelton, C.A.(1982) Broad host range plasmid RK2 encodes multiple kil genes potentially lethal to Escherichia coli host cells. Proc. Natl. Acad. Sci. U.S.A 79, 1935-1939.
  • Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R., White, O., Ketchum, K.A., Dodson, R., Hickey, E.K., Gwinn, M., Dougherty, B., Tomb, J.F., Fleischmann, R.D., Richardson, D., Peterson, J., Kerlavage, A.R., Quackenbush, J., Salzberg, S., Hanson, M., van Vugt, R., Palmer, N., Adams, M.D., Gocayne, J. & Venter, J.C. (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580-586.
  • Furuya, N. & Komano, T. (1996) Nucleotide sequence and characterization of the trbABC region of the IncI1 Plasmid R64: existence of the pnd gene for plasmid maintenance within the transfer region. J. Bacteriol. 178, 1491-1497.
  • Gazit, E. & Sauer, R.T. (1999a) The Doc toxin and Phd antidote proteins of the bacteriophage P1 plasmid addiction system form a heterotrimeric complex. J. Biol. Chem. 274, 16813-16818.
  • Gazit, E. & Sauer, R.T.(1999b) Stability and DNA binding of the phd protein of the phage P1 plasmid addiction system. J. Biol. Chem. 274, 2652-2657.
  • Gerdes, K., Bech, F.W., Jorgensen, S.T., Lobner-Olesen, A., Rasmussen, P.B., Atlung, T., Boe, L., Karlstrom, O., Molin, S. & von Meyenburg, K. (1986) Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J. 5, 2023-2029.
  • Gerdes, K., Helin, K., Christensen, O.W. & Lobner-Olesen, A. (1988) Translational control and differential RNA decay are key elements regulating postsegregational expression of the killer protein encoded by the parB locus of plasmid R1. J. Mol. Biol. 203, 119-129.
  • Gerdes, K., Poulsen, L.K., Thisted, T., Nielsen, A.K., Martinussen, J. & Andreasen, P.H. (1990) The hok killer gene family in gram-negative bacteria. New Biol. 2, 946-956.
  • Gerdes, K., Nielsen, A., Thorsted, P. & Wagner, E.G. (1992) Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable hok, srnB and pndA effector messenger RNAs. J. Mol. Biol. 226, 637-649.
  • Gerdes, K., Gultyaev, A.P., Franch, T., Pedersen, K. & Mikkelsen, N.D. (1997) Antisense RNA-regulated programmed cell death. Annu. Rev. Genet. 31, 1-31.
  • Gerdes, K., Moller-Jensen, J. & Bugge, J.R.(2000) Plasmid and chromosome partitioning: Surprises from phylogeny. Mol. Microbiol. 37, 455-466.
  • Gerdes, K. (2000) Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182, 561-572.
  • Gerdes, K., Aroya, S., Canosa, I., Ceglowski, P., Diaz-Orejas, R., Franch, T., Gultyaev, A.P., Bugge Jensen, R., Kobayashi, I., Macpherson, C., Summers, D., Thomas, C.M. & Zielenkiewicz, U. (2000) A novel proteic plasmid stabilization system from Gram-positive bacteria. in The Horizontal Gene Pool. Bacterial Plasmids and Gene Spread.(Thomas, C.M., ed) pp. 66-67, Harwood Academic Publishers.
  • Golub, E.I. & Panzer, H.A.(1988) The F factor of Escherichia coli carries a locus of stable plasmid inheritance stm, similar to the parB locus of plasmid RI. Mol. Gen. Genet. 214, 353-357.
  • Gordon, G.S., Sitnikov, D., Webb, C.D., Teleman, A., Straight, A., Losick, R., Murray, A.W. & Wright, A.(1997) Chromosome and low copy plasmid segregation in E. coli: Visual evidence for distinct mechanisms. Cell 90, 1113-1121.
  • Gotfredsen, M. & Gerdes, K.(1998) The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol. Microbiol. 29, 1065-1076.
  • Greenfield, T.J., Ehli, E., Kirshenmann, T., Franch, T., Gerdes, K. & Weaver, K.E.(2000) The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol. Microbiol. 37, 652-660.
  • Grinter, N.J., Brewster, G. & Barth, P.T.(1989) Two mechanisms necessary for the stable inheritance of plasmid RP4. Plasmid 22, 203-214.
  • Gronlund, H. & Gerdes, K.(1999) Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. J. Mol. Biol. 285, 1401-1415.
  • Hayes, F. (1998) A family of stability determinants in pathogenic bacteria. J. Bacteriol. 180, 6415-6418.
  • Hayes, F. (2000) The partition system of multidrug resistance plasmid TP228 includes a novel protein that epitomizes an evolutionarily distinct subgroup of the ParA superfamily. Mol. Microbiol. 37, 528-541.
  • Hazan, R., Sat, B., Reches, M. & Engelberg-Kulka, H. (2001) Postsegregational killing mediated by the P1 phage Addiction Module phd-doc requires the Escherichia coli programmed cell death system mazEF. J. Bacteriol. 183, 2046-2050.
  • Hiraga, S. (1992) Chromosome and plasmid partition in Escherichia coli. Annu. Rev. Biochem. 61, 283-306.
  • Honeycutt, R.J., McClelland, M. & Sobral, B.W.(1993) Physical map of the genome of Rhizobium meliloti 1021. J. Bacteriol. 175, 6945- 6952.
  • Jack, R.W., Tagg, J.R. & Ray, B.(1995) Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 171-200.
  • Jack, R.W. & Jung, G. (2000) Lantibiotics and microcins: Polypeptides with unusual chemical diversity. Curr. Opin. Chem. Biol. 4, 310- 317.
  • Jaffe, A., Ogura, T. & Hiraga, S. (1985) Effects of the ccd function of the F plasmid on bacterial growth. J. Bacteriol.163, 841-849.
  • Janniere, L., McGovern, S., Pujol, C., Petit, M.A. & Ehrlich, S.D.(1996) In vivo analysis of the plasmid pAM beta 1 resolution system. Nucleic Acids Res. 24, 3431-3436.
  • Jensen, R.B. & Gerdes, K.(1995) Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol. Microbiol. 17, 205-210.
  • Jensen, R.B., Grohmann, E., Schwab, H., Diaz-Orejas, R. & Gerdes, K.(1995) Comparison of ccd of F, parDE of RP4, and parD of R1 using a novel conditional replication control system of plasmid R1. Mol. Microbiol. 17, 211-220.
  • Jensen, R.B. & Gerdes, K.(1999) Mechanism of DNA segregation in prokaryotes: ParM partitioning protein of plasmid R1 co-localizes with its replicon during the cell cycle. EMBO J. 18, 4076-4084.
  • Johnson, E.P., Strom, A.R. & Helinski, D.R.(1996) Plasmid RK2 toxin protein ParE: Purification and interaction with the ParD antitoxin protein. J. Bacteriol. 178, 1420-1429.
  • Jovanovic, O.S., Ayres, E.K. & Figurski, D.H.(1994) Host-inhibitory functions encoded by promiscuous plasmids. Transient arrest of Escherichia coli segregants that fail to inherit plasmid RK2. J. Mol. Biol. 237, 52-64.
  • Karoui, H., Bex, F., Dreze, P. & Couturier, M.(1983) Ham22, a mini-F mutation which is lethal to host cell and promotes recA-dependent induction of lambdoid prophage. EMBO J. 2, 1863-1868.
  • Kim, S.K. & Wang, J.C.(1998) Localization of F plasmid SopB protein to positions near the poles of Escherichia coli cells. Proc. Natl. Acad. Sci. U.S.A 95, 1523-1527.
  • Kobayashi, I. (1998) Selfishness and death: Raison d’etre of restriction, recombination and mitochondria. Trends Genet. 14, 368-374.
  • Koyama, A.H., Wada, C., Nagata, T. & Yura, T.(1975) Indirect selection for plasmid mutants: Isolation of ColVBtrp mutants defective in self-maintenance in Escherichia coli. J. Bacteriol. 122, 73-79.
  • Kusano, K., Naito, T., Handa, N. & Kobayashi, I.(1995) Restriction-modification systems as genomic parasites in competition for specific sequences. Proc. Natl. Acad. Sci. U.S.A 92, 11095-11099.
  • Kusukawa, N., Mori, H., Kondo, A. & Hiraga, S.(1987) Partitioning of the F plasmid: Overproduction of an essential protein for partition inhibits plasmid maintenance. Mol. Gen. Genet. 208, 365-372.
  • Lane, D., de Feyter, R., Kennedy, M., Phua, S.H. & Semon, D.(1986) D protein of miniF plasmid acts as a repressor of transcription and as a site-specific resolvase. Nucleic Acids Res. 14, 9713-9728.
  • Lavalle, R. (1965) New mutants for regulation of RNA synthesis. Bull. Soc. Chim. Biol. (Paris) 47, 1567-1570.
  • Lehnherr, H., Maguin, E., Jafri, S. & Yarmolinsky, M.B.(1993) Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233, 414-428.
  • Lehnherr, H. & Yarmolinsky, M.B.(1995) Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A 92, 3274-3277.
  • Łobocka, M. & Yarmolinsky, M.(1996) P1 plasmid partition: A mutational analysis of ParB. J. Mol. Biol. 259, 366-382.
  • Loh, S.M., Cram, D.S. & Skurray, R. A.(1988) Nucleotide sequence and transcriptional analysis of a third function (Flm) involved in F-plasmid maintenance. Gene 66, 259-268.
  • Loris, R., Dao-Thi, M.H., Bahassi, E.M., Van Melderen, L., Poortmans, F., Liddington, R., Couturier, M. & Wyns, L.(1999) Crystal structure of CcdB, a topoisomerase poison from E. coli. J. Mol. Biol. 285, 1667-1677.
  • Lynch, A.S. & Wang, J.C.(1995) SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc. Natl. Acad. Sci. U.S.A 92, 1896-1900.
  • Magnuson, R. & Yarmolinsky, M.B.(1998) Corepression of the P1 addiction operon by Phd and Doc. J. Bacteriol. 180, 6342-6351.
  • Maki, S., Takiguchi, S., Horiuchi, T., Sekimizu, K. & Miki, T.(1996) Partner switching mechanisms in inactivation and rejuvenation of Escherichia coli DNA gyrase by F plasmid proteins LetD (CcdB) and LetA (CcdA). J. Mol. Biol. 256, 473-482.
  • Miki, T., Chang, Z.T. & Horiuchi, T.(1984) Control of cell division by sex factor F in Escherichia coli. II. Identification of genes for inhibitor protein and trigger protein on the 42.84-43.6 F segment. J. Mol. Biol. 174, 627-646.
  • Miki, T., Park, J.A., Nagao, K., Murayama, N. & Horiuchi, T.(1992) Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J. Mol. Biol. 225, 39-52.
  • Mohl, D.A. & Gober, J.W.(1997) Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88, 675-684.
  • Mori, H., Mori, Y., Ichinose, C., Niki, H., Ogura, T., Kato, A. & Hiraga, S.(1989) Purification and characterization of SopA and SopB proteins essential for F plasmid partitioning. J. Biol. Chem. 264, 15535-15541.
  • Motallebi-Veshareh, M., Rouch, D.A. & Thomas, C.M.(1990) A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol. Microbiol. 4, 1455-1463.
  • Motallebi-Veshareh, M., Balzer, D., Lanka, E., Jagura-Burdzy, G. & Thomas, C.M.(1992) Conjugative transfer functions of broad-host- range plasmid RK2 are coregulated with vegetative replication. Mol. Microbiol. 6, 907-920.
  • Naito, T., Kusano, K. & Kobayashi, I.(1995) Selfish behavior of restriction-modification systems. Science 267, 897-899.
  • Nielsen, A.K., Thorsted, P., Thisted, T., Wagner, E.G. & Gerdes, K.(1991) The rifampicin-inducible genes srnB from F and pnd from R483 are regulated by antisense RNAs and mediate plasmid maintenance by killing of plasmid-free segregants. Mol. Microbiol. 5, 1961-1973.
  • Nordstrom, K. & Austin, S.J.(1989) Mechanisms that contribute to the stable segregation of plasmids. Annu. Rev. Genet. 23, 37-69.
  • Ogura, T. & Hiraga, S.(1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. U.S.A 80, 4784-4788.
  • Ohnishi, Y., Iguma, H., Ono, T., Nagaishi, H. & Clark, A.J.(1977) Genetic mapping of the F plasmid gene that promotes degradation of stable ribonucleic acid in Escherichia coli. J. Bacteriol. 132, 784-789.
  • Ono, K., Akimoto, S. & Ohnishi, Y.(1987) Nucleotide sequence of the pnd gene in plasmid R483 and role of the pnd gene product in plasmolysis. Microbiol. Immunol. 31, 1071-1083.
  • Ono, K., Akimoto, S., Ono, T. & Ohnishi, Y.(1986) Plasmid genes increase membrane permeability in Escherichia coli. Biochim. Biophys. Acta 867, 81-88.
  • Pansegrau, W., Lanka, E., Barth, P.T., Figurski, D.H., Guiney, D.G., Haas, D., Helinski, D.R., Schwab, H., Stanisich, V.A. & Thomas, C M.(1994) Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J. Mol. Biol. 239, 623-663.
  • Pedersen, K. & Gerdes, K.(1999) Multiple hok genes on the chromosome of Escherichia coli. Mol. Microbiol. 32, 1090-1102.
  • Poulsen, L.K., Larsen, N.W., Molin, S. & Andersson, P. (1989) A family of genes encoding a cell-killing function may be conserved in all gram-negative bacteria. Mol. Microbiol. 3, 1463-1472.
  • Roberts, R.C., Burioni, R. & Helinski, D.R. (1990) Genetic characterization of the stabilizing functions of a region of broad-host-range plasmid RK2. J. Bacteriol. 172, 6204-6216.
  • Roberts, R.C. & Helinski, D.R.(1992) Definition of a minimal plasmid stabilization system from the broad- host-range plasmid RK2. J. Bacteriol. 174, 8119-8132.
  • Roberts, R.C., Spangler, C. & Helinski, D.R.(1993) Characteristics and significance of DNA binding activity of plasmid stabilization protein ParD from the broad-host-range plasmid RK2. J. Biol. Chem. 268, 27109-27117.
  • Roberts, R.C., Strom, A.R. & Helinski, D.R.(1994) The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss. J. Mol. Biol. 237, 35-51.
  • Rodionov, O., Lobocka, M. & Yarmolinsky, M.(1999) Silencing of genes flanking the P1 plasmid centromere. Science 283, 546-549.
  • Rojo, F. & Alonso, J.C.(1994) A novel site-specific recombinase encoded by the Streptococcus pyogenes plasmid pSM19035. J. Mol. Biol. 238, 159-172.
  • Ruiz-Echevarria, M.J., Berzal-Herranz, A., Gerdes, K. & Diaz-Orejas, R.(1991a) The kis and kid genes of the parD maintenance system of plasmid R1 form an operon that is autoregulated at the level of transcription by the co- ordinated action of the Kis and Kid proteins. Mol. Microbiol. 5, 2685-2693.
  • Ruiz-Echevarria, M.J., de Torrontegui, G., Gimenez-Gallego, G. & Diaz-Orejas, R.(1991b) Structural and functional comparison between the stability systems ParD of plasmid R1 and Ccd of plasmid F. Mol. Gen. Genet. 225, 355-362.
  • Ruiz-Echevarria, M.J., Gimenez-Gallego, G., Sabariegos-Jareno, R. & Diaz-Orejas, R.(1995) Kid, a small protein of the parD stability system of plasmid R1, is an inhibitor of DNA replication acting at the initiation of DNA synthesis. J. Mol. Biol. 247, 568-577.
  • Sakikawa, T., Akimoto, S. & Ohnishi, Y.(1989) The pnd gene in E. coli plasmid R16: Nucleotide sequence and gene expression leading to cell Mg2+ release and stable RNA degradation. Biochim. Biophys. Acta 1007, 158-166.
  • Salmon, M.A., Van Melderen, L., Bernard, P. & Couturier, M.(1994) The antidote and autoregulatory
  • functions of the F plasmid CcdA protein: A genetic and biochemical survey. Mol. Gen. Genet. 244, 530-538.
  • Santos-Sierra, S., Giraldo, R. & Diaz-Orejas, R.(1997) Functional interactions between homologous conditional killer systems of plasmid and chromosomal origin. FEMS Microbiol. Lett. 152, 51-56.
  • Sat, B., Hazan, R., Fisher, T., Khaner, H., Glaser, G. & Engelberg-Kulka, H. (2001) Programmed cell death in Escherichia coli: Some antibiotics can trigger mazEF lethality. J. Bacteriol. 183, 2041-2045.
  • Sharpe, M.E. & Errington, J.(1996) The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol. Microbiol. 21, 501-509.
  • Sharpe, M.E., Chatwin, H.M., Macpherson, C., Withers, H.L. & Summers, D.K.(1999) Analysis of the CoIE1 stability determinant Rcd. Microbiology 145, 2135-2144.
  • Sia, E.A., Roberts, R.C., Easter, C., Helinski, D.R. & Figurski, D.H.(1995) Different relative importances of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2. J. Bacteriol. 177, 2789-2797.
  • Smith, A.S. & Rawlings, D.E.(1997) The poison-antidote stability system of the broad- host-range Thiobacillus ferrooxidans plasmid pTF-FC2. Mol. Microbiol. 26, 961-970.
  • Smith, A.S. & Rawlings, D.E.(1998a) Autoregulation of the pTF-FC2 proteic poison-antidote plasmid addiction system (pas) is essential for plasmid stabilization. J. Bacteriol. 180, 5463-5465.
  • Smith, A.S. & Rawlings, D.E.(1998b) Efficiency of the pTF-FC2 pas poison-antidote stability system in Escherichia coli is affected by the host strain, and antidote degradation requires the lon protease. J. Bacteriol. 180, 5458-5462.
  • Steiner, W.W. & Kuempel, P.L.(1998) Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli. Mol. Microbiol. 27, 257-268.
  • Summers, D. (1998) Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol. Microbiol. 29, 1137-1145.
  • Summers, D.K. & Sherratt, D.J.(1984) Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36, 1097-1103.
  • Tam, J.E. & Kline, B.C.(1989) The F plasmid ccd autorepressor is a complex of CcdA and CcdB proteins. Mol. Gen. Genet. 219, 26-32.
  • Thisted, T., Sorensen, N.S., Wagner, E.G. & Gerdes, K.(1994) Mechanism of post-segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5'-end single-stranded leader and competes with the 3'-end of Hok mRNA for binding to the mok translational initiation region. EMBO J. 13, 1960-1968.
  • ---
  • Thisted, T., Nielsen, A.K. & Gerdes, K.(1994) Mechanism of post-segregational killing: Translation of Hok, SrnB and Pnd mRNAs of plasmids R1, F and R483 is activated by 3’-end processing. EMBO J. 13, 1950-1959.
  • Tian, Q.B., Hayashi, T., Murata, T. & Terawaki, Y.(1996b) Gene product identification and promoter analysis of hig locus of plasmid Rts1. Biochem. Biophys. Res. Commun. 225, 679-684.
  • Tian, Q.B., Ohnishi, M., Tabuchi, A. & Terawaki, Y.(1996a) A new plasmid-encoded proteic killer gene system: Cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem. Biophys. Res. Commun. 220, 280-284.
  • Tsuchimoto, S., Ohtsubo, H. & Ohtsubo, E.(1988) Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. J. Bacteriol. 170, 1461-1466.
  • Tsuchimoto, S. & Ohtsubo, E.(1989) Effect of the pem system on stable maintenance of plasmid R100 in various Escherichia coli hosts. Mol. Gen. Genet. 215, 463-468.
  • Tsuchimoto, S., Nishimura, Y. & Ohtsubo, E.(1992) The stable maintenance system pem of plasmid R100: Degradation of PemI protein may allow PemK protein to inhibit cell growth. J. Bacteriol. 174, 4205-4211.
  • Van Melderen, L., Bernard, P. & Couturier, M.(1994) Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol. Microbiol. 11, 1151-1157.
  • Watanabe, E., Inamoto, S., Lee, M.H., Kim, S.U., Ogua, T., Mori, H., Hiraga, S., Yamasaki, M. & Nagai, K.(1989) Purification and characterization of the sopB gene product which is responsible for stable maintenance of mini-F plasmid. Mol. Gen. Genet. 218, 431-436.
  • Weaver, K.E. & Clewell, D.B.(1989) Construction of Enterococcus faecalis pAD1 miniplasmids: Identification of a minimal pheromone response regulatory region and evaluation of a novel pheromone-dependent growth inhibition. Plasmid 22, 106-119.
  • Weaver, K.E., Jensen, K.D., Colwell, A. & Sriram, S.I.(1996) Functional analysis of the Enterococcus faecalis plasmid pAD1-encoded stability determinant par. Mol. Microbiol. 20, 53-63.
  • Wu, K., Jahng, D. & Wood, T.K.(1994) Temperature and growth rate effects on the hok/sok killer locus for enhanced plasmid stability. Biotechnol. Prog. 10, 621-629.
  • Yamaichi, Y., Iida, T., Park, K.S., Yamamoto, K. & Honda, T. (1999) Physical and genetic map of the genome of Vibrio parahaemolyticus: Presence of two chromosomes in Vibrio species. Mol. Microbiol. 31, 1513-1521.
  • Yarmolinsky, M.B. (1995) Programmed cell death in bacterial populations. Science 267, 836-837.
  • Zielenkiewicz, U., Sitkiewicz, I., Kern-Zdanowicz, I. & Cegłowski, P. (2000) Activity of a post-segregational killing system of the plasmid pSM19035 in Bacillus subtilis cells. Plasmid 45, 156.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv48i4p1003kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.