PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 3 | 775-782
Article title

Cytochrome P4502C9 genotype in Southeast Anatolia and possible relation with some serum tumour markers and cytokines.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Substrates for CYP2C9 include fluoxetine, phenytoin, warfarin, losartam and numerous nonsteroidal anti-inflammatory drugs. Polymorphisms in the coding region of the CYP2C9 gene produce variants at amino-acid residues 144 Arg/Cys and 359 Ile/Leu of the CYP2C9 protein. Individuals homozygous for Leu359 have markedly diminished metabolic capacities for most CYP2C9 substrates, the frequency of this allele is, however, rather low. Consistently with the modulation of enzyme activity by genetic and other factors, wide interindividual variability occurs in the elimination and/or dosage requirements of prototypic CYP2C9 substrates. The polymorphic enzyme CYP2C9 takes part in the metabolism of alkylating agents and polycyclic aromatic hydrocarbons like benzo(a)pyrene, a carcinogen present in tobacco smoke. Although the impact of impaired enzyme activity in metabolism of carcinogens and procarcinogens has not been fully defined, an association of CYP2C9 variant alleles to DNA adduct levels in lung tissues as well as to lung cancer risk have been reported. In this study 64 healthy subjects (44M/22F) were analysed for CYP2C9 genotype with PCR-RFLP and for serum carcinoembryonic antigen (CEA), α-fetoprotein (AFP), CA 19-9, CA 15-3, ferritin, IL-6, IL-8 concentrations by chemiluminescence or electrochemiluminescence methods. CYP2C9*1 was found to be the most prevalent allele and CYP2C9*1/CYP2C9*1 was the most frequent genotype represented in 64% of the population in southeastern Anatolia (Gaziantep). Although slight differences in serum tumour marker and cytokine concentrations were observed for CYP2C9 genotypes the differences were statistically insignificant (P >0.05). This could be due to the complexity of the role of CYP2C9 in benzo(a)pyrene metabolism as well as from other contributing factors like interindividual variability of diverse enzymes participating in the same metabolic pathway, unequal expression of the variant alleles and differences in exposure to carcinogens. However, determination of CYP2C9 phenotypes in a larger group of subjects might clarify these slight differences.
Publisher

Year
Volume
48
Issue
3
Pages
775-782
Physical description
Dates
published
2001
received
2000-11-15
revised
2001-02-21
accepted
2001-04-30
Contributors
author
  • Department of Biochemistry and Clinical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
  • Departments of Biochemistry and Clinical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
  • Department of Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
References
  • 1. Ozawara, S. (1997) Genetic polymorphisms in xenobiotic metabolising enzymes as a determinant of susceptibility of environmental mutagens and carcinogens in humans. Yakugaku Zasshi 117, 895-909.
  • 2. Stubbins, M.J., Harries, L.W., Smith, G., Tarbit, M.H. & Wolf, C.R. (1996) Genetic analysis of the cytochrome P450 CYP2C9 locus. Pharmacogenetics 6, 429-439.
  • 3. Ozawa, S., Schoket, B., McDaniel, L.P., Tang, Y.M., Ambrosone, C.B., Kostic, S., Vincze, I. & Kadlubar, F.F. (1999) Analysis of bronchial bulky DNA adduct levels and CYP2C9, GSTP1 and NQO1 genotypes in a Hungarian study population with pulmonary diseases. Carcinogenesis 20, 991-995.
  • 4. Bhasker, C.R., Miners, J.O., Coulter, S. & Birkett, D.J. (1997) Allelic and functional variability of cytochrome P4502C9. Pharmacogenetics 7, 51-58.
  • 5. Chiba, K. (1998) Genetic polymorphism of the CYP2C subfamily. Nippon Yakurigaku Zasshi 112, 15-21.
  • 6. London, S.J., Sullivan-Klose, T., Daly, A.K. & Idle, J.R. (1997) Lung cancer risk in relation to the CYP2C9 genetic polymorphism among Caucasians in Los Angeles County. Pharmacogenetics 7, 401-404.
  • 7. Chang, T.K., Yu, I., Goldstein, J.A. & Waxman, D.J. (1997) Identification of the polymorphically expressed CYP2C19 and the wild type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 7, 211-221.
  • 8. London, S.J., Daly, A.K., Leathart, J.B., Nvidi, W.C. & Idle, J.R. (1996) Lung cancer risk in relation to the CYP2C9*1/CYP2C9*2 genetic polymorphism among African-Americans and Caucasians in Los Angeles County, California. Pharmacogenetics 6, 527-533.
  • 9. Daniel, W.C. & Sell, S. (1999) Tumor markers; in Tietz Fundamentals of Clinical Chemistry (Burtis, C.A., Ashwood, E.R., eds.) pp. 722- 749, WB Saunders Co., U.S.A.
  • 10. Statland, B.E. & Winkel, P. (1996) Neoplasia; in Clinical Chemistry, Theory, Analysis, Correlation (Kaplan, L.A. & Pesce, A.J., eds.) pp. 983-1003, Mosby-Year Book Inc., Missouri.
  • 11. Bei, R., Budillon, A., Reale, M.G., Capuano, G., Pomponi, D., Budillon, G., Frati, L. & Muraro, R. (1999) Cryptic epitopes on a-fetoprotein induce spontaneous immune responses in hepatocellular carcinoma, liver cirrhosis and chronic hepatitis patients. Cancer Res. 59, 5471-5474.
  • 12. Shering, S.G., Sherry, F., McDermott, E.W., O'Higgins, N.J. & Duffy, M.J. (1998) Preoperative CA 15-3 concentrations predict outcome of patients with breast carcinoma. Cancer 83, 2521-2527.
  • 13. Jacobs, I. & Bast, R.C., Jr. (1989) The CA125 tumour-associated antigen: A review of the literature. Hum. Reprod. 4, 1-12.
  • 14. Rubins, J.B., Dunitz, J., Rubins, H.B., Maddaus, M.A. & Niewoehner, D.E. (1998) Serum carcinoembryonic antigen as an adjunct to preoperative staging of lung cancer. J Thorac. Cardiovasc. Surg. 116, 412-416.
  • 15. Vinolas, N., Molina, R., Galan, M.C., Casas, F., Callejas, M.A., Filella, X., Grau, J.J., Balesta, A.M. & Estape, J. (1998) Tumor markers in response monitoring and prognosis of non-small cell lung cancer: Preliminary report. Anticancer Res. 18, 631-634.
  • 16. Fukuda, I., Yamakado, M. & Kiyose, H. (1998) Influence of smoking on serum carcinoembryonic antigen levels in subjects who underwent multhiphasic health testing and services. J. Med. Syst. 22, 89-93.
  • 17. Erbağcı, A.B., Yılmaz, N. & Kutlar, İ. (1999) Menstrual cycle dependent variability for serum tumor markers CEA, AFP, CA 19-9, CA 125, CA 15-3 in healthy women. Disease Markers 15, 259-267.
  • 18. Grover, S., Quinn, M.A., Weideman, P. & Koh, H. (1992) Factors influencing serum CA 125 levels in normal women. Obstet. Gynecol. 79, 511-514.
  • 19. Carter, H.B., Landis, P.K., Metter, E.J., Fleisher, L.A. & Pearson, J.D. (1999) Prostate-specific antigen testing of older men. J. Natl. Cancer Inst. 91,1733-1737.
  • 20. Yılmaz, N., Aynacıoğlu, Ţ., Erbağcı, A.B., Cascorbi, I. & Roots, I. (1999) Implication of arylamine N-acetyltransferase (NAT 2) polymorphism on levels of tumour markers CEA, AFP, CA 125, CA 19.9, CA 15.3. Biomarkers 4, 129-134.
  • 21. Santos-Rosa, M.M., Bienvenu, J. & Whicher, J. (1999) Cytokines; in Tietz Fundamentals of Clinical Chemistry (Burtis, C.A. & Ashwood, E.R., eds.) pp. 541-616, WB Saunders Co., U.S.A.
  • 22. Kurihara, T., Mizunima, H., Obara, M., Andoh, K., Ibuki, Y. & Nishumura, T. (1998) Determination of a normal level of serum CA 125 in postmenopausal women as a tool for preoperative evaluation and postoperative surveillance of endometrial carcinoma. Gynecol. Oncol. 68, 192-196.
  • 23. Aynacıoğlu, A.Ţ., Brockmöller, J., Bauer, S., Sachse, C., Güzelbey, P., Öngen, Z., Nacak, M. & Roots, I. (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br. J. Clin. Pharmacol. 48, 409-415.
  • 24. Yasar, Ü., Elliasson, E., Dahl, M.-L., Johansson, L., Ingelman-Sundberg, M. & Sjöqvist, F. (1999) Validation of methods for CYP2C9 genotyping: Frequencies of mutant alleles in a Swedish population. Biochem. Biophys. Res. Commun. 254, 628-631.
  • 25. Yokose, T., Doy, M., Taniguchi, T., Schimada, T., Kakiki, M., Horie, T., Matsuzaki, Y. & Mukai, K. (1999) Immunohistochemical study of cytochrome P4502C and 3A in human non- neoplastic and neoplastic tissues. Virchows Arch. 434, 401-411.
  • 26. Jover, R., Bort, R., Gómez-Lechón, M.J. & Castell, J.V. (1998) Re-expression of C/EBP a-induces CYP2B6, CYP2C9 and CYP2D6 genes in HepG2 cells. FEBS Lett. 431, 227-230.
  • 27. Lampen, A., Bader, A., Bestmann, T., Winkler, M., Witte, L. & Borlak, J.T. (1998) Catalytic activities, protein- and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines. Xenobiotica 28, 429-441.
  • 28. Chang, T.K.H., Yu, L., Maurel, P. & Waxman, D.J. (1997) Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: Response to cytochrome P-450 inducers and autoinduction by oxazaphosphorins. Cancer Res. 57, 1946-1954.
  • 29. Vestergaard, E.M., Wolf, H. & Qrntoft, T.F. (1998) Increased concentrations of genotype- interpreted CA 19-9 in urine of bladder cancer patients mark diffuse atypia of the urothelium. Clin. Chem. 44, 197-204.
  • 30. Wesseling, J., van der Valk, S. & Hilkens, J. (1996) A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane associated mucin episialin/MUC 1. Mol. Biol. Cell 7, 565-577.
  • 31. Yamazaki, H. & Shimada, T. (1997) Progesterone and testosterone hydroxilation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch. Biochem. Biophys. 346, 161-169.
  • 32. Roy, S.K., Korzekwa, K.R., Gonzales, F.J., Moschel, R.C. & Dolan, M.E. (1995) Human liver oxidative metabolism of O6-benzylguanine. Biochem. Pharmacol. 50, 1385-1389.
  • 33. Chen, J.Q., Storm, A., Gustafsson, J.A. & Morgan, E.T. (1995) Suppression of the constitutive expression of cytochrome P-4502C11 by cytokines and interferons in primary cultures of rat hepatocytes: Comparison with induction of acute-phase genes and demonstration that CYP2C11 promoter sequences are involved in the suppressive response to interleukins 1 and 6. Mol. Pharmacol. 47, 940-947.
  • 34. Beurton, F., Gueret, G., Horisberger, M., Cheron, G. & Cresteil, G. (1999) Transcriptional activation of CYP2C, MxA and Fas in sudden infant death syndrome. Int. J. Mol. Med. 3, 33-39.
  • 35. Iber, H. & Morgan, E.T. (1998) Regulation of hepatic cytochrome P4502C11 by transforming growth factor-beta, hepatocyte growth factor and interleukin 11. Drug Metab. Dispos. 26, 1042-1044.
  • 36. Corton, J.C., Fan, L.Q., Brown, S., Anderson, S.P., Bocos, C., Cattley, R.C., Mode, A. & Gustafsson, J.A. (1998) Down-regulation of cytochrome P4502C family members and positive acute-phase response gene expression by peroxisome proliferator chemicals. Mol. Pharmacol. 54, 463-473.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv48i3p775kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.