PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 3 | 763-774
Article title

Purification and characterization of α-amylases from the intestine and muscle of Ascaris suum (Nematoda).

Content
Title variants
Languages of publication
EN
Abstracts
EN
α-Amylase (EC 3.2.1.1) was purified from the muscle and intestine of the parasitic helminth of pigs Ascaris suum. The enzymes from the two sources differed in their properties. Isoelectric focusing revealed one form of α-amylase from muscles with pI of 5.0, and two forms of amylase from intestine with pI of 4.7 and 4.5. SDS/PAGE suggested a molecular mass of 83 kDa and 73 kDa for isoenzymes of α-amylases from intestine and 59 kDa for the muscle enzyme. α-Amylase from intestine showed maximum activity at pH 7.4, and the enzyme from muscle at pH 8.2. The muscle enzyme was more thermostabile than the intestinal α-amylase. Both the muscle and intestine amylase lost half of its activity after 15 min at 70°C and 50°C, respectively. The Km values were: for muscle amylase 0.22 μg/ml glycogen and 3.33 μg/ml starch, and for intestine amylase 1.77 μg/ml glycogen and 0.48 μg/ml starch. Both amylases were activated by Ca2+ and inhibited by EDTA, iodoacetic acid, p-chloromercuribenzoate and the inhibitor of α-amylase from wheat. No significant differences were found between the properties of α-amylases from parasites and from their hosts.
Publisher

Year
Volume
48
Issue
3
Pages
763-774
Physical description
Dates
published
2001
received
2001-01-22
revised
2001-04-2
accepted
2001-07-27
Contributors
  • Department of Biochemistry, Faculty of Biology, University of Warmia and Masuria, Olsztyn, Poland
References
  • Andrews, A.T. (1988) Electrophoresis, Theory, Techniques and Biochemical Applications. 2nd edn., pp. 283-286, Academic Press, New York.
  • Anindyawati, T., Melliawati, R., Ito, K., Iizuka, M. & Minamiura, N. (1998) Three different types of alpha-amylases from Aspergillus awamori KT-11: Their purifications, properties, and specificities. Biosci. Biotech. Biochem. 62, 1351-1357.
  • Bernfeld, P. (1955) Amylases α and β. Methods Enzymol. 1, 149-151.
  • Buisson, G., Duee, E., Haser, R. & Payan, F. (1987) Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 Å resolution. Role of calcium in structure and activity. EMBO J. 6, 3909-3916.
  • Caraway, W.T. (1959) A stable starch substrate for determination of amylase in serum and other body fluids. Am. J. Clin. Pathol. 32, 97-99.
  • Davis, B.J. (1964) Disc electrophoresis. II. Method and application. Ann. N.Y. Acad. Sci. 121, 99-107.
  • Declerck, N., Machius, M., Wiegand, G., Huber, R. & Gaillardin, C. (2000) Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylase. J. Mol. Biol. 301, 1041-1057.
  • De Cordt, S., Avila, I., Hendrickx, M. & Tobback, P. (1994a) DSC and protein-based time-temperature integrators: Case study of α-amylase stabilized by polyols and/or sugar. Biotechnol. Bioeng. 44, 859-865.
  • De Cordt, S., Hendrickx, M., Maesmans, G. & Tobback, P. (1994b) The influence of polyalcohols and carbohydrates on the thermostability of the α-amylase. Biotechnol. Bioeng. 43, 107-114.
  • D'Amico, S., Gerday, Ch. & Feller, G. (2000) Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene 253, 95-105.
  • Feller, G., Lonhienne, T., Deroanne, Ch., Libioulle, C., Van Beeument, J. & Gerday, Ch. (1992) Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267, 5217-5221.
  • Fereyroux, G., Perrier, J., Forest, E., Marchismouren, G., Pigserver, A. & Santimone, M. (1998) The human pancreatic α-amylase isoforms: Isolation, structural studies and kinetics of inhibition by acarbose. Biochim. Biophys. Acta 1388, 10-20.
  • Ferrer, A., Hoebeke, J. & Bout, D. (1999) Purification and characterization of two α-amylases from Toxoplasma gondii. Exp. Parasitol. 92, 64-72.
  • Henrissat, B. & Bairoch, A. (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316, 695-696.
  • Henrissat, B. & Davies, G. (1997) Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637-644.
  • Ho, N.F.H., Geary, T.G., Raub, T.J., Barsuhn, C.L. & Thompson, D.P. (1990) Biophysical transport properties of cuticule of Ascaris suum. Mol. Biochem. Parasitol. 41, 153-166.
  • Hutny, J. & Kossobudzki, L. (1968) Assay of alpha-1,4-transglycosylase activity with p-nitrophenyl-N-maltoside as substrate. Arch. Immunol. Ther. Exp. (Warsz). 16, 670-675.
  • Ishikawa, K., Matsui, I., Kobayashi, S., Nakatani, H. & Honda, K. (1993) Substrate recognition at the bindig site in mammalian pancreatic α-amylases. Biochemistry 32, 6259-6265.
  • Ishizuka, Y., Sakano, Y. & Kobayashi, T. (1986) Subsite structure and mode of action of native and modified α-amylase from porcine pancreas. Agric. Biol. Chem. 50, 3019-3023.
  • Janeček, S. (1994) Sequence similarities and evolutionary relationships of microbial, plant, and animal alpha-amylases. Eur. J. Biochem. 224, 519-524.
  • Karpiak, S.E. & Sobiech, K.A. (1982) Natural low molecular weight organic compounds as alpha-amylase differentiating factors. Bull. Acad. Pol. Sci.: Biol. 29, 195-198.
  • Kutty, A.V.M. & Pattabiraman, T. N. (1986) Differential inhibition of porcine pancreatic amylase isoenzymes by the sorgum (Sorghum bicolor) seed amylase inhibitor. Biochem. Arch. 2, 203-208.
  • Lecker, D.N. & Khan, A. (1998) Model for inactivation of α-amylase in the presence of salts: Theoretical and experimental studies. Biotechnol. Prog. 14, 621-625.
  • Lowry, O., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  • MacGregor, E.A. (1993) Relationships between structure and activity in the α-amylase family of starch-metabolising enzymes. Starch 45, 232-237.
  • Matsui, I., Ishikawa, K., Miyairi, S., Fukui, S. & Honda, K. (1992) Alteration of bond-cleavage pattern in the hydrolysis catalysed by Saccharomycopsis α-amylase altered by site-directed mutagenesis. Biochemistry 31, 5232-5236.
  • Matsuo, Y., Inomata, N. & Yamazaki, T. (1999) Evolution of the amylase isozyme in the Drosophila melanogaster species subgroup. Biochem. Genet. 37, 289-200.
  • McMahon, H.E.M., Kelly, C.T. & Forgarty, W.M. (1999) Thermostability of three α-amylases of Streptomyces sp IMD 2679. J. Ind. Microbiol. Biotechnol. 22, 96-99.
  • Nebinger, P. (1986) Separation and characterization of four different amylases of Entamoeba histolytica. II. Characterization of amylase. Biol. Chem. Hoppe-Seyler 367, 169-176.
  • Omichi, K. & Ikenaka, T. (1988) Inspection of human salivary α-amylase action by its transglycosylation action. J. Biochem. 104, 881- 883.
  • O`Donnel, M.D. & McGeeny, K.F. (1976) Purification and properties of an α-amylase inhibitor from wheat. Biochim. Biophys. Acta 422, 159-169.
  • Pasero, L., Mazzei-Pierron, Y., Abadie, B., Chicheportiche, Y. & Marchis-Mouren, G. (1986) Complete amino acid sequence and location of the five disulfide bridges in porcine pancreatic α-amylase. Biochim. Biophys. Acta 869, 147-157.
  • Robins, D.M. & Samuelson, L.C. (1992) Retrotransposons and the evolution of mammalian gene expression. Genetica 86, 191-201.
  • Qian, M., Haser, R. & Payan, F. (1993) Structure and molecular model refinement of pig pancreatic alpha-amylase at 2.1 Å resolution. J. Mol. Biol. 231, 785-799.
  • Sakano, Y., Ishizuki, Y., Takahashi, S. & Kobayashi, T. (1986) Chemical modification of sulfhydryl groups in porcine pancreatic α-amylase, and purification and properties of the modified amylase. Agric. Biol. Chem. 50, 3013-3018.
  • Seigner, Ch., Prodanov, E. & Marchis-Mouren, G. (1987) The determination of subsite binding energies of porcine pancreatic α-amylase by comparing hydrolytic activity towards substrates. Biochim. Biophys. Acta 913, 200-209.
  • Skude, G. (1977) On human amylase isoenzymes. Scand. J. Gastroenterol. Suppl. 44, 1-37.
  • Strumeyer, D.H., Kao, W., Roberts, T. & Forsyth- Davis, D. (1988) Isozymes of α-amylase in the porcine pancreas: Population distribution. Comp. Biochem. Physiol. B 91, 351-357.
  • Svensson, B. (1988) Regional distant sequence homology between amylases, alpha-glucosidases and transglucanosylases. FEBS Lett. 230, 72-76.
  • Terra, W.R., Espinoza-Fuentes, F.P. & Ferreira, C. (1988) Midgut amylase, lysozyme, aminopeptidase, and trehalase from larvae and adults of Musca domestica. Arch. Insect Biochem. Physiol. 9, 283-297.
  • Terziè, T., Milanoviè, M., Ivanoviè M., Stramenkoviè-Rdak, M. & Andjelkoviè, M. (1999) Adaptive significance of amylase polymorphism in Drosophila. Analysis of the association between tissue-specific expression and specific activity in Amy super (F) genotypes of Drosophila subobscura. Genet. Sel. Evol. 31, 91-99.
  • Van den Bossche, H. & Borgers, M. (1973) Subcellular distribution of digestive enzymes in Ascaris suum intestine. Int. J. Parasitol. 3, 59-65.
  • Von Brand, T. (1979) Biochemistry and Physiology of Endoparasites; pp. 46-50, Elsevier/North- Holand Biomedical Press, Amsterdam.
  • Weber, K. & Osborn, M. (1969) The reliability of molecular weight determinations by dodecyl sulphate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406-4412.
  • Yamashita, H., Nakatani, H. & Tonomura, B. (1991) Substrate-selective activation of histidine-modified porcine pancreatic alpha-amylase by chloride ion. J. Biochem. (Tokyo) 110, 605-607.
  • Ženka, J. & Prokopiè, J. (1984) Isolation and properties of alpha-amylase from perienteric fluid of Ascaris suum. Folia Parasitol. 31, 183-186.
  • Żółtowska, K. (1989) Some properties of glycogen, determined by different methods, from the muscles of Ascaris suum and Ascaridia galli (Nematoda). Acta Parasitol. Pol. 34, 357-364.
  • Żółtowska, K. (1990) Enzymes hydrolysing starch and glycogen from the intestine and body wall of Ascaridia galli. Acta Parasitol. Pol. 35, 61-65.
  • Żółtowska, K. (1991) Distribution of enzymes hydrolyzing carbohydrates in the alimentary tract of Ascaris suum. Acta Parasitol. Pol. 36, 93-96.
  • Żółtowska, K. (1993) Badania in vitro wpływu leków przeciwrobaczych na aktywność enzymów trawiennych w wyciągach z jelita Ascaris suum i trzustki wieprzowej. Wiad. Parazytol. 39, 391-397 (in Polish).
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv48i3p763kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.