Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 3 | 755-762
Article title

Effect of tartaric acid on conformation and stability of human prostatic phosphatase: An infrared spectroscopic and calorimetric study.

Title variants
Languages of publication
The solution structure and thermal stability of human prostatic acid phosphatase (hPAP) in the absence and in the presence of tartaric acid were studied by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The temperature dependence of the infrared spectrum and DSC scans indicate that hPAP undergoes thermal unfolding at a temperature between 49.5 and 52.5°C. Binding of tartaric acid does not lead to major changes in the secondary structure of hPAP, however, hPAP with bound tartaric acid shows a significantly increased thermal stability. These results helped to better understand the mechanism of hPAP unfolding at the elevated temperature.
Physical description
  • Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kraków, Poland
  • 1. Kilsheimer, G.S. & Axelrod, B. (1957) Inhibition of prostatic acid phosphatase by α-hydroxy carboxylic acids. J. Biol. Chem. 227, 879-890.
  • 2. La Count, M.W., Handy, G. & Lebioda, L. (1998) Structural origins of L(+)tartrate inhibition of human prostatic acid phosphatase. J. Biol. Chem. 273, 30406-30409.
  • 3. Van Etten, R.L. & Saini, M.S. (1978) Selective purification of tartrate inhibitable acid phosphatase: Rapid and efficient purification of human and canine prostatic acid phosphatase. Clin. Chem. 24, 1525-1530.
  • 4. Jacob, C.G., Lewinski, K., Kuciel, R., Ostrowski, W. & Lebioda, L. (2000) Crystal structure of human prostatic acid phosphatase. The Prostate 42, 211-218.
  • 5. Lovelace, L., Lewinski, K., Jakob, C.G., Kuciel, R., Ostrowski, W. & Lebioda, L. (1997) Prostatic acid phosphatase: Structural aspects of inhibition by L(+)-tartrate ions. Acta Biochim. Polon. 44, 673-678.
  • 6. Kuciel, R., Jakob, C.G., Lebioda, L. & Ostrowski, W.S. (1992) Crystallization of human prostatic acid phosphatase using biphasic systems. J. Cryst Growth 122, 199-203.
  • 7. Hadden, J.M., Bloemendal, M., Haris, P.I., Srai, S.K.S. & Chapman, D. (1994) Fourier transform infrared spectroscopy and differential scanning calorimetry of transferrins: Human serum transferrin, rabbit serum transferrin and human lactoferrin. Biochim. Biophys. Acta 1205, 59-67.
  • 8. Bobrzecka, K., Ostrowski, W. & Rybarska, J. (1968) The effect of iodination on the activity and structure of acid phosphomonoesterase from human prostate. Acta Biochim. Polon. 15, 369-379.
  • 9. Olinger, J.M., Hill, D.M., Jakobsen, R.J. & Brody, R.S. (1986) Fourier transform infrared studies of ribonuclease in H2O and 2H2O solutions. Biochim. Biophys. Acta 869, 89-98.
  • 10. Savitzky, A. & Golay, J.E. (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627- 1639.
  • 11. Byler, D.M. & Susi, H. (1986) Examination of the secondary structure of proteins by deconvoluted FTIR spectra. Biopolymers 25, 469- 487.
  • 12. Griffiths, P.R. & Pariente, G.L. (1986) Introduction to spectral deconvolution. Trends Anal. Chem. 5, 209-215.
  • 13. Dong, A., Huang, P. & Caughey, W.S. (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29, 3303-3308.
  • 14. Fabian, H., Naumann, D., Misselwitz, R., Ristau, O., Gerlach, D. & Welfle, H. (1992) Secondary structure of streptokinase in aqueous solution: A Fourier transform infrared spectroscopic study. Biochemistry 31, 6532-6538.
  • 15. Ahmed, A., Tajmir-Riahi, H.A. & Carpentier, R. (1995) A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by FTIR spectroscopy. FEBS Lett. 363, 65-68.
  • 16. Bramanti, E. & Benedetti, E. (1996) Determination of the secondary structure of isomeric forms of human serum albumin by a particular frequency deconvolution procedure applied to Fourier transform IR analysis. Biopolymers 38, 639-653.
  • 17. Casal, H.L., Kohler, U. & Mantsch, H.H. (1988) Structural and conformational changes of β-lactoglobulin B: An infrared spectroscopic study of the effect of pH and temperature. Biochim. Biophys. Acta 957, 11-20.
  • 18. Privalov, P.L. (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv. Protein Chem. 35, 1-104.
  • 19. Hu, C.Q. & Sturtevant, J.M. (1987) Thermodynamic study of yeast phosphoglycerate kinase. Biochemistry 26, 178-182.
  • 20. Kuciel, R., Mazurkiewicz, A. & Ostrowski, W.S. (1996) The folding intermediate of reversibly denatured human prostatic acid phosphatase. Int. J. Biol. Macromol. 18, 167- 175.
  • 21. Luchter-Wasyl, E. & Ostrowski, W. (1974) Subunit structure of human prostatic acid phosphatase. Biochim. Biophys. Acta 365, 349-359.
  • 22. Ostrowski, W.S., Kuciel, R., Tanaka, F. & Yagi, K. (1993) Fluorometric analysis of native, urea-denatured and refolded human prostatic acid phosphatase. Biochim. Biophys. Acta 1164, 319-326.
  • 23. Ostrowski, W., Bhargava, A.K., Dziembor, E., Gizler, M., Gryszkiewicz, J. & Barnard, E.A. (1976) Acid phosphomonoesterase of human prostate. Carbohydrate content and optical properties. Biochim. Biophys. Acta 453, 262-269.
  • 24. Surewicz, W.K., Mantsch, H.H. & Chapman, D. (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment. Biochemistry 32, 389-394.
  • 25. Surewicz, W.K. & Olesen, P.R. (1995) On the thermal stability of α-crystallin: A new insight from infrared spectroscopy. Biochemistry 34, 9655-9660.
  • 26. Ostrowski, W.S. (1988) Acid Phosphatase of Human Prostate Gland. Ossolineum, Wrocław (in Polish).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.