Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 3 | 687-698
Article title

Antioxidative defense to lead stress in subcellular compartments of pea root cells.

Title variants
Languages of publication
Lead, similar to other heavy metals and abiotic factors, causes many unfavorable changes at the subcellular and molecular levels in plant cells. An increased level of superoxide anion in Pisum sativum root cells treated with 1 mM Pb(NO3)2 evidenced oxidative stress conditions. We found increased activities of enzymatic components of the antioxidative system (catalase and superoxide dismutase) in the cytosol, mitochondrial and peroxisomal fractions isolated from root cells of Pisum sativum grown in modified Hoagland medium in the presence of lead ions (0.5 or 1 mM). Two isoenzyme forms of superoxide dismutase (Cu,Zn-SOD and Mn-SOD) found in different subcellular compartments of pea roots were more active in Pb-treated plants than in control. Increased amount of alternative oxidase accompanied by an increased activity of this enzyme was found in mitochondria isolated from lead-treated roots. These results show that plants storing excessive amounts of lead in roots defend themselves against the harmful oxidative stress caused by this heavy metal.

Physical description
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
  • Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
  • 1. Burzyński, M. (1988) The uptake and accumulation of phosphorus and nitrates and the activity of nitrate reductase in cucumber seedlings. Acta Soc. Bot. Pol. 57, 349-359.
  • 2. Krupa, Z., Quist, G. & Huner, N.P.A. (1993) The effects of cadmium on photosyntesis of Phaseolus vulgaris - a fluoroscence analysis. Physiol. Plant. 88, 626-630.
  • 3. Kurepa, J., Van Montagu, M. & Inze, D. (1997) Expression of sodCp and sodB genes in Nicotiana tabacum: Effects of light and copper excess. J. Exp. Bot. 48, 2007-2014.
  • 4. Boussama, N., Ouariti, A., Suzuki, A. & Ghorbal, M.H. (1999) Cd-stress on nitrogen assimilation. J. Plant Physiol. 155, 310-317.
  • 5. Rauser, W.R. (1995) Phytochelatins and related peptides, structure, biosynthesis and function. Plant Physiol. 109, 1141-1149.
  • 6. Prasad, K.V.S.K., Paradha Saradhi, P. & Sharmila, P. (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ. Exp. Bot. 42, 1-10.
  • 7. Clijsters, A., Cuypers, A. & Vangronsveld, J. (1999) Physiological responses to heavy metals in higher plants. Defence against oxidative stress. Z. Naturforsch. 54c, 730-734.
  • 8. Cuypers, A., Vangronsveld, J. & Clijsters, H. (1999) The chemical behaviour of heavy metals plays a prominent role in the induction of oxidative stress. Free Radic. Res. 31, Suppl: 39-43.
  • 9. Stroiński, A. & Kozłowska, M. (1997) Cadmium-induced oxidative stress in potato tuber. Acta Soc. Bot. Pol. 66, 189-195.
  • 10. Bittel, J.E., Koeppe, D.E. & Miller, R.J. (1974) Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. Physiol. Plant. 30, 226-230.
  • 11. Porter, J.R. & Sheridon, R.P. (1981) Inhibition of nitrogen fixation in alfalfa by arsenate, heavy metals, fluoride and simulated acid rain. Plant Physiol. 68, 143-148.
  • 12. Valle, B.L. & Ulmer, D.D. (1972) Biochemical effects of mercury, cadmium and lead. Annu. Rev. Biochem. 41, 91-129.
  • 13. Grill, E., Winnacker, E.L. & Zenk, M.H. (1985) Phytochelatins: The principal heavy-metal complexing peptides of higher plants. Science 230, 674-676.
  • 14. Zenk, M.H. (1996) Heavy metal detoxification in higher plants - a review. Gene 179, 21-30.
  • 15. Raha, S. & Robinson, B.H. (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502-508.
  • 16. Pompella, J.G., Romani, A., Benedetti, A. & Comport, M. (1991) Loss of membrane protein thiols and lipid peroxidation in allyl alcohol hepatotoxicity. Biochem. Pharmacol. 41, 1255-1259.
  • 17. Inoue, T., Yosida, Y., Nishimura, M., Kurosawa, K. & Tagawa, K. (1993) Ca2+-induced, phospholipase-independent injury during reoxygenation of anoxic mitochondria. Biochim. Biophys. Acta 1140, 313-320.
  • 18. Noctor, G. & Foyer, Ch.H. (1998) Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249-279.
  • 19. Gupta, M., Cuypers, A., Vangronsveld, J. & Clijsters, H. (1999) Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol. Plant. 106, 262- 267.
  • 20. Foyer, C.H., Descourvieres, P. & Kunert, K.J. (1994) Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell Environ. 17, 507-523.
  • 21. Scandalios, J.G. (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7-12.
  • 22. Alscher, R.G. (1997) Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plant. 100, 224-234.
  • 23. Purvis, A.C. & Shewfelt, R.L. (1993) Does the alternative pathway ameliorate chilling injury in sensitive plants tissues? Physiol. Plant. 88, 712-718.
  • 24. Purvis, A.C. (1997) Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant. 100, 165-170.
  • 25. Wagner, A.M. & Moore, A.L. (1997) Structure and function of the plant alternative oxidase: Its role in the oxygen defence mechanism. Biosci. Rep. 17, 319-333.
  • 26. Popov, V.N., Simonian, R.A., Skulachev, V.P. & Starcov, A.A. (1997) Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett. 415, 87-90.
  • 27. Maxwell, D.P., Wang, Y. & McIntosh, L. (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. U.S.A. 96, 8271-8276.
  • 28. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
  • 29. Doke, N. (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol. 23, 345-357.
  • 30. Beauchamp, C. & Fridovich, J. (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287.
  • 31. Aebi, H.E. (1983) Catalase; in Methods of Enzymatic Analyses (Bergmeyer, H.U., ed.) vol. 3, pp. 273-282, Verlag Chemie, Weinheim.
  • 32. Davis, B.J. (1964) Disc electrophoresis: II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404-427.
  • 33. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  • 34. Wierzbicka, M. (1987) Lead translocation and localization in Allium cepa roots. Can. J. Bot. 65, 1851-1860.
  • 35. Wierzbicka, M. (1988) Mitotic disturbances induced by low doses of inorganic lead. Caryologia 41, 143-160.
  • 36. Woźny, A. & Jerczyńska, E. (1991) The effect of lead on early stages of Phaseolus vulgaris L. growth in in vitro conditions. Biol. Plant. 33, 32-39.
  • 37. Przymusiński, R., Spychała, M. & Gwóźdź, E.A. (1991) Inorganic lead changes growth and polypeptide pattern of lupin roots. Biochem. Physiol. Pflanzen 187, 51-57.
  • 38. Piechalak, A., Tomaszewska, B., Barałkiewicz, D. & Małecka, A. (2001) Accumulation and detoxification of lead ions in legumes. Phytochemistry, in press..
  • 39. Willkins, D.A. (1957) A technique for the measurement of lead tolerance in plants. Nature 180, 37-38.
  • 40. Samardakiewicz, S. (2000) Structural and functional effects of lead on plant roots. Ph.D. Dissertation, Adam Mickiewicz University in Poznan (in Polish).
  • 41. Woźny, A. (1995) Lead in plant cells. Sorus, Poznan (in Polish).
  • 42. Stroiński, A. & Zielezińska, M. (1997) Cadmium effect on hydrogen peroxide, glutathione and phytochelatins levels in potato tuber. Acta Physiol. Plant. 19, 127-136.
  • 43. Rucińska, R., Tukendorf, A., Stroiński, A. & Gwóźdź, E.A. (1997) Phytochelatins and antioxidant enzymes in lupin roots exposed to heavy metals. Biol. Bull. 34, 50-51.
  • 44. Noctor, G., Arisi, A.C.M., Jouanin, L., Kunert, K.J., Rennenberg, H. & Foyer, Ch.H. (1998) Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49, 623-647.
  • 45. Przymusiński, R., Rucińska, R. & Gwóźdź, E.A. (1995) The stress-stimulated 16 kDa polypeptide from lupin roots has properties of cytosolic Cu/Zn-superoxide dismutase. Environ. Exp. Bot. 35, 485-495.
  • 46. Gallego, S.M., Benavides, M.P. & Tomaro, M.L. (1996) Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Sci. 121, 151-159.
  • 47. Rio, L.A. del, Sandalio, L.M., Yanez, J. & Gomez, M. (1985) Induction of a manganese-containing superoxide dismutase in leaves of Pisum sativum L. by high nutrient levels of zinc and manganese. J. Inorg. Biochem. 24, 25-34.
  • 48. Cakmak, I. & Horst, W.J. (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxide activities in root tips of soybean (Glycine max). Physiol. Plant. 8, 463-468.
  • 49. Somashekaraiah, B.V., Padmaja, K. & Prasad, A.R.K. (1992) Phytotoxity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris). Involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant. 85, 85-89.
  • 50. Luna, C.M., Gonzales, C.A. & Trippi, V.S. (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol. 35, 11-45.
  • 51. Cakmak, I., Strbac, D. & Marschner, H. (1993) Activities of hydrogen peroxide scavenging enzymes in germinating wheat seeds. J. Exp. Bot. 44, 127-132.
  • 52. Kesseler, A. & Brand, D. (1995) The mechanism of the stimulation of state 4 respiration by cadmium in potato tuber (Solanum tuberosum) mitochondria. Plant Physiol. Biochem. 33, 519-528.
  • 53. Wagner, A.M. (1995) A role for active oxygen species as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells. FEBS Lett. 368, 339-342.
  • 54. Vanlerberghe, G.C. & McIntosh, L. (1997) Alternative oxidase: From gene to function. Annu. Rev. Plant Physiol. Mol. Biol. 48, 703- 734.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.