Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 3 | 663-672

Article title

Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C- methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.

Content

Title variants

Languages of publication

EN

Abstracts

EN
Higher plants, several algae, bacteria, some strains of Streptomyces and possibly malaria parasite Plasmodium falciparum contain the novel, plastidic DOXP/MEP pathway for isoprenoid biosynthesis. This pathway, alternative with respect to the classical mevalonate pathway, starts with condensation of pyruvate and glyceraldehyde-3-phosphate which yields 1-deoxy-D-xylulose 5-phosphate (DOXP); the latter product can be converted to isopentenyl diphosphate (IPP) and eventually to isoprenoids or thiamine and pyridoxal. Subsequent reactions of this pathway involve transformation of DOXP to 2-C-methyl-D-erythritol 4-phosphate (MEP) which after condensation with CTP forms 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME). Then CDP-ME is phosphorylated to 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) and to 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (ME-2,4cPP) which is the last known intermediate of the DOXP/MEP pathway. Formation of IPP and dimethylallyl diphosphate (DMAPP) from ME-2,4cPP still requires clarification. This novel pathway appears to be involved in biosynthesis of carotenoids, phytol (side chain of chlorophylls), isoprene, mono-, di-, tetraterpenes and plastoquinone whereas the mevalonate pathway is responsible for formation of sterols, sesquiterpenes and triterpenes. Several isoprenoids were found to be of mixed origin suggesting that some exchange and/or cooperation exists between these two pathways of different biosynthetic origin. Contradictory results described below could indicate that these two pathways are operating under different physiological conditions of the cell and are dependent on the developmental state of plastids.

Year

Volume

48

Issue

3

Pages

663-672

Physical description

Dates

published
2001
received
2001-07-10
revised
2001-08-22
accepted
2001-09-4

Contributors

  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland

References

  • Adam, K.P. & Zapp, J. (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry 48, 653-659.
  • Arigoni, D., Sagner, S., Latzel, C., Eisenreich, W., Bacher, A. & Zenk, M.H. (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular rearrangement. Proc. Natl. Acad. Sci. U.S.A. 94, 10600-10605.
  • Bach, T.J., Boronat, A., Campos, N., Ferrer, A. & Vollack, K.U. (1999) Mevalonate biosynthesis in plants. Crit. Rev. Biochem. Mol. Biol. 34, 107-122.
  • Bouvier, F., d'Harlingue, A., Suire, C., Backhaus, R.A. & Camara, B. (1998) Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol. 117, 1423-1431.
  • Chaykin, S., Law, J., Philipis, A.H., Tchen, T.T. & Bloch, K. (1958) Phosphorylated intermediates in the synthesis of squalene. Proc. Natl. Acad. Sci. U.S.A. 44, 998-1004.
  • Disch, A., Hemmerlin, A., Bach, T.J. & Rohmer, M. (1998a) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem. J. 331, 615-621.
  • Disch, A., Schwender, J., Müller, C., Lichtenthaler, H.K. & Rohmer, M. (1998b) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem. J. 333, 381-388.
  • Eisenreich, W., Menhard, B., Hylands, P.J., Zenk, M.H. & Bacher, A. (1996) Studies on the biosynthesis of taxol: The taxane carbon skeleton is not of mevalonoid origin. Proc. Natl. Acad. Sci. U.S.A. 93, 6431-6436.
  • Flesch, G. & Rohmer, M. (1988) Prokaryotic hopanoids: The biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between triterpenes and D-ribose. Eur. J. Biochem. 175, 405-411.
  • Heintze, A., Görlach, J., Leuschner, C., Hoppe, P., Hagelstein, P., Schultze-Siebert, D. & Schultz, G. (1994) Plastidic isoprenoid synthesis during chloroplast development. Change from metabolic autonomy to division-of-labour stage. Plant Physiol. 93, 1121-1127.
  • Herz, S., Wungsintaweekul, J., Schuhr, C.A., Hecht, S., Lüttgen, H., Sagner, S., Fellermeier, M., Eisenreich, W., Zenk, M.H., Bacher, A. & Rohdich, F. (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C- methyl-D-erythritol 2-phosphate to 2C-methyl- D-erythritol 2,4-cyclodiphosphate. Proc. Natl. Acad. Sci. U.S.A. 97, 2486-2490.
  • Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Türbachova, I., Eberl, M., Zeidler, J., Lichtenthaler, H.K., Soldati, D. & Beck, E. (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573-1575.
  • Julliard, J.H. & Douce, R. (1991) Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher plant chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 88, 2042-2045.
  • Kim, K.K., Yamashita, H., Sawa, Y. & Shibata, H. (1996) A high activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase in chloroplasts of Stevia rebaudiana, Bertoni. Biosci. Biotech. Biochem. 60, 685-686.
  • Knöss, W., Reuter, B. & Zapp, J. (1997) Biosynthesis of the labdane diterpene marrubiin in M. vulgare via a non-mevalonate pathway. Biochem. J. 326, 449-454.
  • Kuzuyama, T., Shimizu, T., Takahashi, S. & Seto, H. (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in the non-mevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett. 39, 7913-7916.
  • Kuzuyama, T., Takagi, M., Takahashi, S. & Seto, H. (2000a) Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from Streptomyces sp. strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J. Bacteriol. 182, 891-897.
  • Kuzuyama, T., Takahashi, S., Takagi, M. & Seto, H. (2000b) Characterization of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, an enzyme involved in isopentenyl diphosphate biosynthesis and identification of its catalytic amino acid residues. J. Biol. Chem. 275, 19928-19932.
  • Lange, B.M., Wildung, M.R., McCaskill, D. & Croteau, R. (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 2100-2104.
  • Lange, B.M. & Croteau, R. (1999) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: Cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch. Biochem. Biophys. 365, 170-174.
  • Lichtenthaler, H.K. (1998) The plants' 1-deoxy- D-xylulose-5-phosphate pathway for biosynthesis of isoprenoids. Fett. Lipid 100, 128-138.
  • Lichtenthaler, H.K. (1999) The 1-deoxy-D- xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 47-65.
  • Lichtenthaler, H.K., Rohmer, M. & Schwender, J. (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101, 643-652.
  • Lichtenthaler, H.K., Schwender, J., Seeman, M. & Rohmer, M. (1995) Carotenoid biosynthesis in green algae proceeds via a novel biosynthetic pathway; in Photosynthesis: from Light to Biosphere (Mathis, P., ed.) pp. 115-118, Kluwer, Dordrecht.
  • Lichtenthaler, H.K., Zeidler, J., Schwender, J. & Müller, C. (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Z. Naturforsch. C 55, 305-313.
  • Lois, L.M., Campos, N., Putra, S.R., Danielsen, K., Rohmer, M. & Boronat, A. (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 95, 2105-2110.
  • Lüttgen, H., Rohdich, F., Herz, S., Wungsintaweekul, J., Hecht, S., Schuhr, C.A., Fellermeier, M., Sagner, S., Zenk, M.H., Bacher, A. & Eisenreich, M. (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of diphosphocytidyl-2C-methyl-D-erythritol. Proc. Natl. Acad. Sci. U.S.A. 97,1062-1067.
  • Lynen, F., Eggerer, H., Henning, U. & Kessel, I. (1958) Farnesyl-pyrophosphat und 3-Methyl-D3-butenyl-1 Pyrophosphat, die Biologischen Vorstufen des Squalenes. Zur Biosynthese der Terpene III. Angew. Chem. 70, 738-742.
  • Mandel, M.A., Feldmann, K.A., Herrera-Estrella, L., Rocha-Sosa, M. & Leon, P. (1996) CLA1, a novel gene required for chloroplast development is highly conserved in evolution. Plant J. 9, 649-658.
  • Nabeta, K., Kawae, T., Saitoh, T. & Kikuchi, T. (1997) Synthesis of chlorophyll a and b-carotene from 2H and 13C-labeled mevalonates and 13C-labeled glycine in cultured cells of liverworts Heteroscyphus planus and Lophocolea heterophylla. J. Chem. Soc. Perkin Trans. 1, 261-267.
  • Ostrovsky, D., Diomina, G., Lysak, E., Matveeva, E., Ogrel, O. & Trutko, S. (1998) Effect of oxidative stress on the biosynthesis of 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate and isoprenoids by several bacterial strains. Arch. Microbiol. 171, 69-72.
  • Preiss, M. & Schultz, G. (1994) Mevalonate (MEV) pathway in immature chloroplasts, discrimination of CHLP MVA kinases against the corresponding cytosol-ER kinases. Plant Physiol. 105 (Suppl.), 65.
  • Proteau, P.J. (1998) Biosynthesis of phytol in the cyanobacterium Synechocystis sp. UTEX 2470: utilization of the non-mevalonate pathway. J. Nat. Prod. 61, 841-843.
  • Rodriguez-Concepcion, M., Campos, N., Lois, L.M., Maldonado, C., Hoeffler, J.F., Grosdemange-Billiard, C., Rohmer, M. & Boronat, A. (2000) Evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBS Lett. 473, 328-332.
  • Rohdich, F., Wungsintaweekul, J., Eisenreich, W., Richter, G., Schuhr, C.A., Hecht, S., Zenk, M.H. & Bacher, A. (2000a) Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl- D-erythritol synthase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 97, 6451-6456.
  • Rohdich, F., Wungsintaweekul, J., Lüttgen, H., Fischer, M., Eisenreich, W., Schuhr, C.A., Fellermeier, M., Schramek, N., Zenk, M.H. & Bacher, A. (2000b) Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-D-erythritol kinase from tomato. Proc. Natl. Acad. Sci. U.S.A. 97, 8251-8256.
  • Rohdich, F., Wungsintaweekul, J., Fellermeier, M., Sagner, S., Herz, S., Kis, K., Eisenreich, W., Bacher, A. & Zenk, M.H. (1999) Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C- methylerythritol. Proc. Natl. Acad. Sci. U.S.A. 96, 11758-11763.
  • Rohmer, M., Knani, M., Simonin, P., Sutter, B. & Sahm, H. (1993) Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295, 517-524.
  • Sacchettini, J.C. & Poulter, C.D. (1997) Creating isoprenoid diversity. Science 277, 1788-1789.
  • Schwender, J., Müller, C., Zeidler, J. & Lichtenthaler, H.K. (1999) Cloning and heterologous expression of a cDNA encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett. 455, 140-144.
  • Schwender, J., Seemann, M., Lichtenthaler, H.K. & Rohmer, M. (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side- chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem. J. 316, 73-80.
  • Schwender, J., Zeidler, J., Gröner, R., Müller, C., Focke, M., Braun, S., Lichtenthaler, F.W. & Lichtenthaler, H.K. (1997) Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett. 414, 129-134.
  • Sprenger, G.A., Schörken, U., Wiegert, T., Grolle, S., de Graaf, A.A., Taylor, S.V., Begley, T.P., Bringer-Meyer, S. & Sahm, H. (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc. Natl. Acad. Sci. U.S.A. 94, 12857-12862.
  • Wanke, M., Dallner, G. & Swiezewska, E. (2000) Subcellular localization of plastoquinone and ubiquinone synthesis in spinach cells. Biochim. Biophys. Acta 1463, 188-194.
  • Wong, R.J., McCormack, D.K. & Russell, D.W. (1982) Plastid 3-hydroxy-3-methylglutaryl coenzyme A reductase has distinctive kinetic and regulatory features: Properties of the enzyme and positive phytochrome control of activity in pea seedlings. Arch. Biochem. Biophys. 216, 631-638.
  • Zeidler, J.G., Lichtenthaler, H.K., May, H.U. & Lichtenthaler, F.W. (1997) Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway? Z. Naturforsch. 53c, 1087-1089.
  • Zeidler, J., Schwender, J., Müller, C., Wiesner, J., Weidemeyer, C., Beck, E., Jomaa, H. & Lichtenthaler, H.K. (1998) Inhibition of the non-mevalonate 1-deoxy-D-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z. Naturforsch. 53c, 980-986.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv48i3p663kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.