Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 2 | 563-572
Article title

Effects of wheat germ agglutinin and concanavalin A on the accumulation of glycosaminoglycans in pericellular matrix of human dermal fibroblasts. A comparison with insulin.

Title variants
Languages of publication
The effect of insulin, wheat germ agglutinin (WGA), peanut agglutinin (PNA) and concanavalin A (ConA) on [3H]glucosamine incorporation into pericellular glycosaminoglycans (GAGs) was investigated in two lines of cultured human dermal fibroblasts. Insulin and WGA stimulated [3H]glucosamine incorporation into hyaluronic acid (HA) and heparan sulphate (HS) without any alteration of chondroitin sulphate (CS) and dermatan sulphate (DS) contents. ConA increased [3H]glucosamine incorporation into HS, CS and DS, but had no effect on [3H]glucosamine incorporation into HA. PNA affected neither the content, nor the composition of GAGs. In contrast to PNA, ConA and WGA stimulated glycolysis and demonstrated an evident antiproliferative effect on dermal fibroblasts. Thus, both the insulin-like action of WGA and ConA on cultured dermal fibroblasts and the differences between the effects of lectins on modulation of GAGs synthesis appear to be determined by their chemical structure.
Physical description
  • 1. Rudiger, H., Siebert, H.C., Solis, D., Jimenez- Barbero, J., Romero, A., von der Leith, C.W., Diaz-Marino, T. & Gabius, H.J. (2000) Medicinal chemistry based on sugar code: Fundamentals of lectinology and experimental strategies with lectins as targets. Curr. Med. Chem. 7, 389-416.
  • 2. Messina, J.L., Hamlin, J. & Larner, J. (1987) Insulin-mimetic actions of wheat germ agglutinin and concanavalin A on specific mRNA levels. Arch. Biochem. Biophys. 254, 110-115.
  • 3. Purrello, F., Burnham, D.B. & Goldfine, I.D. (1983) Insulin receptor antiserum and plant lectins mimic the direct effects of insulin on nuclear envelope phosphorylation. Science 221, 462-464.
  • 4. Kaplowitz, P.B. & Haar J.L. (1988) Antimitogenic actions of lectins in cultured human fibroblasts. J. Cell Physiol. 136, 13-22.
  • 5. Zanetta, J.P., Badache, A., Maschke, S., Marschal, P. & Kuchler, S. (1994) Carbohydrates and soluble lectins in the regulation of cell adhesion and proliferation. Histol. Histopathol. 9, 385-412.
  • 6. Dean, J.W. 3rd, Karshen, B. & Briggett, P. (1999) Lectins inhibit periodontal ligament fibroblast attachment, spreading and migration on laminin substrates. J. Periodontal Res. 34, 41-49.
  • 7. Ruoslahti, E. (1989) Proteoglycans in cell regulation. J. Biol. Chem. 264, 13369-13372.
  • 8. Laurent, T.C. & Fraser, J.R. (1992) Hyaluronan. FASEB J. 6, 2397-2404.
  • 9. Hardingham, T.E. & Fosang, A.J. (1992) Proteoglycans: Many forms and many functions. FASEB J. 6, 861-870.
  • 10. Moscatelli, D. & Rubin, H. (1977) Hormonal control of hyaluronic acid production in fibroblasts and its relation to nucleic acid and protein. J. Cell Physiol. 91, 79-88.
  • 11. Lelongt, B., Vandewalle, A., Brenchley, P.E.C., Baudouin, B., Geniteau-Legendre, M., Verroust, P.J. & Ronco, P.M. (1993) Major influence of cell differentiation status on characteristics of proteoglycans synthesized by cultured rabbit proximal tubule cells: Role of insulin and dexamethasone. J. Cell Physiol. 154, 175-191.
  • 12. Yevdokimova, N.Yu. & Yefimov, A.S. (1997) High glucose modulates insulin responsiveness of carbohydrate metabolism and glycosaminoglycan synthesis in human cultured dermal fibroblasts. Diabetol.Croat. 26, 75-83.
  • 13. Wortmann, J., Prinz, R., Ullrich, K. & von Figura, K. (1979) Effect of lectins on the metabolism of sulfated glycosaminoglycans in cultured fibroblasts. Biochim. Biophys. Acta 588, 26-34.
  • 14. Yan, W., Nakashima, K., Iwamoto, M. & Kato, Y. (1990) Stimulation by concanavalin A of cartilage-matrix proteoglycan synthesis in chondrocyte cultures. J. Biol. Chem. 265, 10125-10131.
  • 15. Becchetti, E., Locci, P., Marinucci, L., Lilli, C., Pezzetti, F. & Carinci, P. (1994) Age related effects of lectins on GAG metabolism in cultured embryonic fibroblasts. Cell. Mol. Biol. (Noisy-le-grand) 40, 183-192.
  • 16. Evangelisti, R., Becchetti, E., Baroni, T., Rossi, L., Arena, N., Valeno, V., Carinci, P. & Locci, P. (1995) Modulation of phenotypic expression of fibroblasts by alteration of the cytoskeleton. Cell Biochem. Funct. 13, 41-52.
  • 17. Hohorst, H.J. (1965) Lactate determination with lactic dehydrogenase and DPN; in Methods of Enzymatic Analysis (Bergmeyer, H.U., ed.) pp. 266-271, Academic Press, New York, London.
  • 18. Yevdokimova, N.Yu. & Freshney, R.I. (1997) Activation of paracrine growth factors by a heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells. Br. J. Cancer 76, 281-289.
  • 19. Heinegard, D. & Sommarin, Y. (1987) Isolation and characterization of proteoglycans. Methods Enzymol. 144, 319-372.
  • 20. Lotan, R.M. & Barzilai, D. (1990) Effect of wheat germ agglutinin and concanavalin A on insulin binding and response by Madin-Darby canine kidney cells. Isr. J. Med. Sci. 26, 5-11
  • 21. Cuatrecasas, P. & Tell, G.P. (1973) Insulin-like activity of concanavalin A and wheat germ agglutinin-direct interactions with insulin receptors. Proc. Natl. Acad. Sci. U.S.A. 70, 485- 489.
  • 22. Roth, R.A., Cassel, D.I., Moddux, B.A. & Goldfine, I.D. (1983) Regulation of insulin receptor kinase activity by insulin mimickers and insulin antagonist. Biochem. Biophys. Res. Commun. 115, 245-252.
  • 23. DeGeorge, J.J. & Carbonetto, S. (1986) Wheat germ agglutinin inhibits nerve fiber growth and concanavalin A stimulates nerve fiber initiation in cultures of dorsal root ganglia neurons. Brain Res. 393, 169-175.
  • 24. Kulkarni, G.V., Lee, W., Seth, A. & McCulloch, C.A. (1998) Role of mitochondrial membrane potential in concanavalin A-induced apoptosis in human fibroblasts. Exp. Cell Res. 245, 170-178.
  • 25. Schwarz, R.E., Wojcechowich, D.C., Picon, A.I., Schwarz, M.A. & Paty, B.B. (1999) Wheat germ agglutinin-mediated toxicity in pancreatic cancer cells. Br. J. Cancer 80, 1754-1762.
  • 26. Comer, F.I. & Hart, G.W. (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J. Biol. Chem. 275, 29179- 29182.
  • 27. Liu, J., Fitzli, D., Liu, M., Tseu, I., Caniggia, I., Rotin, D. & Post, M. (1998) PDGF-induced glycosaminoglycan synthesis is mediated via phosphatidylinositol 3-kinase. Am. J. Physiol. 274, L702-L713.
  • 28. Matsuo, T., Hazeki, K., Hazeki, O., Katada, T. & Michio, U.I. (1996) Activation of phosphatidylinositol 3-kinase by concanavalin A through dual signalling pathways, G-protein- coupled and phosphotyrosine-related, and an essential role of the G-protein-coupled signals for the lectin-induced respiratory burst in human monocytic THP-1 cells. Biochem. J. 315, 505-512.
  • 29. Karlsson, A. (1999) Wheat germ agglutinin induces NADPH-oxidase activity in human neutrophils by interaction with mobilizable receptors. Infect. Immun. 67, 3461-3468.
  • 30. Hauri, H.P., Appenzeller, Ch., Kuhn, F. & Nufer, O. (2000) Lectins and traffic in the secretory pathway. FEBS Lett. 476, 32-37.
  • 31. Sato, T., Kondo, T., Fujisawa, T., Seiki, M. & Ito, A. (1999) Furin-independent pathway of membrane type-1 matrix metalloproteinase activation in rabbit dermal fibroblasts. J. Biol. Chem. 274, 37280-37284.
  • 32. Sanford, G.L. & Harris-Hooker, S. (1990) Stimulation of vascular cell proliferation by beta-galactoside specific lectins. FASEB J. 4, 2912-2918.
  • 33. Lorea, P., Goldschmidt, D., Darro, F., Salmon, I., Bovin, N., Gabius, H.J., Kiss, R. & Danguy, A. (1992) Peanut lectin: A mitogen for normal human colonic epithelium and human HT29 colorectal cancer cells. J. Natl. Cancer Inst. 84, 1410-1416.
  • 34. Jain, D., Kaur, K.J., Goel, M. & Salunke, D.M. (2000) Structural basis of functional mimicry between carbohydrate and peptide ligands of Con A. Biochem. Biophys. Res. Commun. 272, 843-849.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.