Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 2 | 495-510

Article title

Mg2+ ions do not induce expansion of the melted DNA region in the open complex formed by Escherichia coli RNA polymerase at a cognate synthetic Pa promoter. A quantitative KMnO4 footprinting study

Content

Title variants

Languages of publication

EN

Abstracts

EN
Footprinting studies of prokaryotic open transcription complexes (RPO), based on oxidation of pyrimidine residues by KMnO4 and/or OsO4 at a single oxidant dose, have suggested that the extent of DNA melting in the transcription bubble region increases in the presence of Mg2+. In this work, quantitative KMnO4 footprinting in function of the oxidant dose of RPO, using Escherichia coli RNA polymerase (Eσ70 ) at a fully functional synthetic promoter Pa having -35 and -10 consensus hexamers, has been used to determine individual rate constants of oxidation of T residues in this region at 37°C in the absence of Mg2+ and in the presence of 10 mM MgCl2, and to evaluate therefrom the effect of Mg2+ on the extent of DNA melting. Population distributions of end-labeled DNA fragments corresponding to oxidized Ts were quantified and analyzed according to the single-hit kinetic model. Pseudo-first order reactivity rate constants, ki, thus obtained demonstrated that Mg2+ ions bound to RPO merely enhanced the reactivity of all 11 oxidizable thymines between the +3 and -11 promoter sites by a position-dependent factor: 3-4 for those located close to the transcription start point +1 in either DNA strand, and about 1.6 for those located more distantly therefrom. On the basis of these observations, we conclude that Mg2+ ions bound to RPO at Pa do not influence the length of the melted DNA region and propose that the higher reactivity of thymines results mainly from lower local repulsive electrostatic barriers to MnO4- diffusion around carboxylate binding sites in the catalytic center of RPO and promoter DNA phosphates.

Year

Volume

48

Issue

2

Pages

495-510

Physical description

Dates

published
2001
received
2001-05-22
accepted
2001-05-30

Contributors

  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland

References

  • 1. Springgate, C.F. & Loeb, L.A. (1975) On the fidelity of transcription by Escherichia coli ribonucleic acid polymerase. J. Mol. Biol. 97, 577-591.
  • 2. Krakow, J.S., Rhodes, G. & Jovin, T.M. (1976) RNA polymerase: Catalytic mechanisms and inhibitors; in RNA Polymerase (Losick, R. & Chamberlin, M., eds.) pp. 127-157, Cold Spring Harbor Laboratory Press, New York.
  • 3. Wu, C.W. & Goldthwait, D.A. (1969) Studies on nucleotide binding to the ribonucleic acid polymerase by a fluorescence technique. Biochemistry 8, 4450-4458.
  • 4. Koren, R. & Mildwan, A.S. (1977) Magnetic resonance and kinetic studies of the role of divalent cation activator of RNA polymerase from Escherichia coli. Biochemistry 16, 241-249.
  • 5. Burgess, P.M.J. & Eckstein, J. (1978) Absolute configuration of diastereoisomers of adenosine 5'-O-(1-thio-triphosphate); Consequences for the stereochemistry of polymerization by DNA-dependent RNA polymerase from Escherichia coli. Proc. Natl Acad. Sci. U.S.A. 75, 4798-4800.
  • 6. Szafrański, P., Smagowicz, W.J. & Wierzchowski, K.L. (1985) Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments and nucleotides interaction. Acta Biochim. Polon. 32, 329-349.
  • 7. Sousa, R., Chung, Y.J., Rose, J.P. & Wang, B.C. (1993) Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution. Nature 364, 593-599.
  • 8. Zaychikov, E., Martin, E., Denissova, L., Kozlov, M., Markovtsov, V., Kashlev, M., Heumann, H., Nikiforov, V., Goldfarb, A. & Mustaev, A. (1996) Mapping of catalytic residues in the RNA polymerase active center. Science 273, 107-109.
  • 9. Zhang, G., Campbell, E., Minakhin, L., Richter, C., Severinov, K. & Darst, S. (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811-824.
  • 10. Suh, W.C., Leirmo, S. & Record, Jr., M.T. (1992) Roles of Mg2+ in the mechanism of formation and dissociation of open complexes between Escherichia coli RNA polymerase and the λPR promoter: Kinetic evidence for a second open complex requiring Mg2+. Biochemistry 31, 7815-7825.
  • 11. Suh, W.C., Ross, W. & Record, Jr., M.T. (1993) Two open complexes and a requirement for Mg2+ to open the λPR transcription start site. Science 259, 358-361.
  • 12. Craig, M.L., Suh, W.C. & Record, Jr., M.T. (1995) HO· and DNase I probing of Eσ70 RNA polymerase-λPR promoter open complexes: Mg+2 binding and its structural consequences at the transcription start site. Biochemistry 34, 15624-15632.
  • 13. Zaychikov, E., Denissova, L., Meier, T., Gotte, M. & Heumann, H. (1997) Influence of Mg2+ and temperature on formation of the transcription bubble. J. Biol. Chem. 272, 2259-2267.
  • 14. deHaseth, P.L. & Helmann, J.D. (1995) Open complex formation by Escherichia coli RNA polymerase: The mechanism of polymerase-induced strand separation of double helical DNA. Mol. Microbiol. 16, 817-824.
  • 15. deHaseth, P.L., Zupancic, M.L. & Record, Jr., M.T. (1998) RNA polymerase-promoter interactions: The comings and goings of RNA polymerase. J. Bacteriol. 180, 3019-3025.
  • 16. Chen, Y.F. & Helmann, J.D. (1997) DNA- melting at the Bacillus subtilis flagellin promoter nucleates near -10 and expands unidirectionally. J. Mol. Biol. 267, 47-59.
  • 17. Meier, T., Schickor, P., Wedel, A., Cellai, L. & Heumann, H. (1995) In vitro transcription close to the melting point of DNA: Analysis of Thermatoga maritima RNA polymerase-promoter complexes at 75°C using chemical probes. Nucleic Acids Res. 23, 988-994.
  • 18. Tsodikov, O.V., Craig, M.L., Saecker, R.M. & Record, Jr., M.T. (1998) Quantitative analysis of multiple-hit footprinting studies to characterize DNA conformation changes in protein-DNA complexes; Application to DNA opening by Eσ70 RNA polymerase. J. Mol. Biol. 283, 757-769.
  • 19. Łoziński, T., Markiewicz, W.T., Wyrzykiewicz, T.K. & Wierzchowski, K.L. (1989) Effect of the sequence-dependent structure of the 17 bp AT spacer on the strength of consensus-like E. coli promoters in vivo. Nucleic Acids Res. 17, 3855-3863.
  • 20. Łoziński, T., Adrych-Rozek, K., Markiewicz, W.T. & Wierzchowski, K.L. (1991) Effect of DNA bending in various regions of a consensus-like Escherichia coli promoter on its strength in vivo and structure of the open complex in vitro. Nucleic Acids Res. 19, 2947- 2953.
  • 21. Łoziński, T. & Wierzchowski, K.L. (1996) Effect of reversed orientation and length of AnTn DNA bending sequences in the -35 and spacer domains of a consensus-like Escherichia coli promoter on its strength in vivo and gross structure of the open complex in vitro. Acta Biochim. Polon. 43, 265-280.
  • 22. Kolasa, I. (2001) Effect of An·Tn DNA bending tracts on kinetics of transcription initiation in vitro. Ph.D. Thesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa (in Polish).
  • 23. Roe, J.-H., Burgess, R.R. & Record, Jr., M.T. (1984) Kinetics and mechanism of the interaction of Escherichia coli RNA polymerase with the λPR promoter. J. Mol. Biol. 176, 495-521.
  • 24. Roe, J.H., Burgess, R.R. & Record, Jr., M.T. (1985) Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-λPR promoter interaction. Assignment of the kinetic steps corresponding to protein conformational change and DNA opening. J. Mol. Biol. 184, 441-453.
  • 25. Buc, H. & McClure, W.R. (1985) Kinetics of open complex formation between Escherichia coli RNA polymerase and lacUV5 promoter. Biochemistry 24, 2712-2723.
  • 26. Duval-Valentin, G. & Ehrlich, R. (1987) Dynamic and structural characterization of multiple steps during complex formation between E. coli RNA polymerase and the tetR promoter from pSC101. Nucleic Acids Res. 15, 575-594.
  • 27. Łoziński, T. & Wierzchowski, K.L. (2001) Effect of Mg2+ on kinetics of oxidation of pyrimidines in duplex DNA by potassium permanganate. Acta Biochim. Polon. 48, 511-523.
  • 28. Burgess, R.R. & Jendrisak, J.J. (1975) A procedure for the rapid, large-scale purification of Escherichia coli DNA-dependent RNA polymerase involving polymin P precipitation and DNA-cellulose chromatography. Biochemistry 14, 4634-4638.
  • 29. Sternbach, H., Engelhardt, R. & Lesius, A.G. (1975) Rapid isolation of highly active RNA polymerase from Escherichia coli and its subunits by matrix-bound heparin. Eur. J. Biochem. 60, 51-55.
  • 30. Sasse-Dwight, S. & Gralla, J.D. (1989) KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem. 264, 8074- 8081.
  • 31. Sasse-Dwight, S. & Gralla, J.D. (1991) Footprinting protein-DNA complexes in vivo. Methods Enzymol. 208, 146-168.
  • 32. Hayatsu, H. & Ukita, H. (1967) The selective degradation of pyrimidines in nucleic acids by permanganate oxidation. Biochem. Biophys. Res. Commun. 29, 556-561.
  • 33. Borowiec, A., Zhang, L., Sasse-Dwight, S. & Gralla, J.D. (1987) DNA supercoiling promotes formation of a bent repression loop in lac DNA. J. Mol. Biol. 196, 101-111.
  • 34. Ide, H., Kow, Y.W. & Wallace, S.S. (1985) Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Res. 13, 8035-8052.
  • 35. Helmann, J.D. & deHaseth, P.L. (1999) Protein-nucleic acid interactions during open complex formation investigated by systematic alternation of the protein and DNA binding partners. Biochemistry 38, 5959-5967.
  • 36. Mustaev, A., Kozlov, M., Markovtsov, V., Zaychikov, E., Denissova, L. & Goldfarb, A. (1997) Modular organization of the catalytic center of RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 94, 6641-6645.
  • 37. Darst, S.A., Polyakov, A., Richter, C. & Zhang, G. (1998) Structural studies of Escherichia coli RNA polymerase; in Mechanisms of Transcription. Cold Spring Harbor Symposia on Quantitative Biology (Stillman, B., ed.) vol. 63, pp. 269-276, Cold Spring Laboratory Press, Cold Spring Harbor, New York.
  • 38. Finn, R.D., Orlova, E.V., Gowen, B., Buck, M. & van Heel, M. (2000) Escherichia coli RNA polymerase core and holoenzyme structures. EMBO J. 19, 6833-6844.
  • 39. Naryshkin, N., Revyakin, A., Kim, Y., Mekler, V. & Ebright, R. (2000) Structural organization of the RNA polymerase-promoter open complex. Cell 101, 601-611.
  • 40. Strainic, Jr., M.G., Sullivan, J.J., Velevis, A. & deHaseth, P.L. (1998) Promoter recognition by Escherichia coli RNA polymerase: Effects of the UP element on open complex formation and promoter clearance. Biochemistry 37, 18074-18080.
  • 41. Juang, Y.L. & Helmann, J.D. (1994) A promoter melting region in the primary sigma factor of Bacillus subtilis. Identification of functionally important aromatic amino acids. J. Mol. Biol. 235, 1470-1488.
  • 42. Malhotra, A., Severinova, E. & Darst, S.A. (1996) Crystal structure of a σ70 subunit fragment from E. coli RNA polymerase. Cell 87, 127-136.
  • 43. Misra, V.K. & Draper, D.E. (1999) The interpretation of Mg2+ binding isotherms for nucleic acids using Poisson-Boltzman theory. J. Mol. Biol. 294, 1135-1147.
  • 44. Palecek, E. (1992) Probing DNA structure with osmium tetraoxide complexes in vitro. Methods Enzymol. 212, 139-155.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv48i2p495kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.