Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 2 | 313-321

Article title

Genomics and the evolution of aminoacyl-tRNA synthesis.

Content

Title variants

Languages of publication

EN

Abstracts

EN
Translation is the process by which ribosomes direct protein synthesis using the genetic information contained in messenger RNA (mRNA). Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. Thus, the sequential pairing of codons in mRNA with tRNA anticodons determines the order of amino acids in a protein. It is therefore imperative for accurate translation that tRNAs are only coupled to amino acids corresponding to the RNA anticodon. This is mostly, but not exclusively, achieved by the direct attachment of the appropriate amino acid to the 3'-end of the corresponding tRNA by the aminoacyl-tRNA synthetases. To ensure the accurate translation of genetic information, the aminoacyl-tRNA synthetases must display an extremely high level of substrate specificity. Despite this highly conserved function, recent studies arising from the analysis of whole genomes have shown a significant degree of evolutionary diversity in aminoacyl-tRNA synthesis. For example, non-canonical routes have been identified for the synthesis of Asn-tRNA, Cys-tRNA, Gln-tRNA and Lys-tRNA. Characterization of non-canonical aminoacyl-tRNA synthesis has revealed an unexpected level of evolutionary divergence and has also provided new insights into the possible precursors of contemporary aminoacyl-tRNA synthetases.

Year

Volume

48

Issue

2

Pages

313-321

Physical description

Dates

published
2001
received
2001-02-14

Contributors

author
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
author
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
author
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
author
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
author
  • Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, Laboratory B, The Panum Institute, Copenhagen, Denmark
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
author
  • Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, Laboratory B, The Panum Institute, Copenhagen, Denmark
author
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
author
  • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, U.S.A.
author
  • Departments of Chemistry; Molecular, Cellular and Developmental Biology; Yale University, New Haven, Connecticut, U.S.A.

References

  • Arnez, J.G. & Moras, D. (1997) Structural and functional considerations of the aminoacylation reaction. Trends Biochem. Sci. 22, 211-216.
  • Becker, H.D. & Kern, D. (1998) Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc. Natl. Acad. Sci. U.S.A. 95, 12832-12837.
  • Brown, J.R. & Doolittle, W.F. (1999) Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J. Mol. Evol. 49, 485-495.
  • Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton, G.G., Blake, J.A., FitzGerald, L.M., Clayton, R.A., Gocayne, J.D., Kerlavage, A.R., Dougherty, B.A., Tomb, J.F.,Adams, M.D., Reich, C.I., Overbeek, R., Kirkness, E.F., Weinstock, K.G., Merrick, J.M., Glodek, A., Scott, J.L., Geoghagen, N.S.M. & Venter, J.C. (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058-1073.
  • Bunjun, S., Stathopoulos, C., Graham, D., Min, B., Kitabatake, M., Wang, A.L., Wang, C.C., Vivarès, C.P., Weiss, L.M. & Söll, D. (2000) A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proc. Natl. Acad. Sci. U.S.A. 97, 12997-13002.
  • Commans, S. & Böck, A. (1999) Selenocysteine inserting tRNAs: An overview. FEMS Microbiol. Rev. 23, 335-351.
  • Crick, F.H.C. (1958) On protein synthesis. Symp. Soc. Exp. Biol. 12, 138-163.
  • Crick, F.H.C. (1970) Central dogma of molecular biology. Nature 227, 561-563.
  • Curnow, A. W., Ibba, M. & Söll, D. (1996) tRNA-dependent asparagine formation. Nature 382, 589-590.
  • Curnow, A.W., Hong, K.W., Yuan, R., Kim, S.I., Martins, O., Winkler, W., Henkin, T.M. & Söll, D. (1997) Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl. Acad. Sci. U.S.A. 94, 11819-11826.
  • Curnow, A.W., Tumbula, D.L., Pelaschier, J.T., Min, B. & Söll, D. (1998) Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 95, 12838- 12843.
  • Delarue, M. (1995) Partition of aminoacyl-tRNA synthetases in two different structural classes dating back to early metabolism: Implications for the origin of the genetic code and the nature of protein sequences. J. Mol. Evol. 41, 703-711.
  • Gesteland, R.F., Cech, T.R. & Atkins, J.F. (1999) The RNA World. Cold Spring Harbor Laboratory Press.
  • Hutchison, C.A., Peterson, S.N., Gill, S.R., Cline, R.T., White, O., Fraser, C.M., Smith, H.O. & Venter, J.C. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165-2169.
  • Ibba, M., Bono, J.L., Rosa, P.A. & Söll, D. (1997a) Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc. Natl. Acad. Sci. U.S.A. 94, 14383-14388.
  • Ibba, M., Morgan, S., Curnow, A.W., Pridmore, D. R., Vothknecht, U. C., Gardner, W., Lin, W., Woese, C. R. & Söll, D. (1997b) A euryarchaeal lysyl-tRNA synthetase: Resemblance to class I synthetases. Science 278, 1119-1122.
  • Ibba, M., Losey, H.C., Kawarabayasi, Y., Kikuchi, H., Bunjun, S. & Söll, D. (1999) Substrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement. Proc. Natl. Acad. Sci. U.S.A. 96, 418-423.
  • Ibba, M. & Söll, D. (1999) Quality control mechanisms during translation. Science 286, 1893-1897.
  • Ibba, M. & Söll, D. (2000) Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617-650.
  • Illangasekare, M., Sanchez, G., Nickles, T. & Yarus, M. (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267, 643-647.
  • Lee, N., Bessho, Y., Wei, K., Szostak, J.W. & Suga, H. (2000) Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Biol. 7, 28-33.
  • Maizels, N. & Weiner, A.M. (1994) Phylogeny from function: Evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc. Natl. Acad. Sci. U.S.A. 91, 6729-6734.
  • Nabholz, C.E., Hauser, R. & Schneider, A. (1997) Leishmania tarentolae contains distinct cytosolic and mitochondrial glutaminyl-tRNA synthetase activities. Proc. Natl. Acad. Sci. U.S.A. 94, 7903-7908.
  • Nagel, G.M. & Doolittle, R.F. (1995) Phylogenetic analysis of the aminoacyl-tRNA synthetases. J. Mol. Evol. 40, 487-498.
  • RajBhandary, U.L. (1994) Initiator transfer RNAs. J. Bacteriol. 176, 547-552.
  • Ribas de Pouplana, L., Turner, R.J., Steer, B.A. & Schimmel, P. (1998) Genetic code origins: tRNAs older than their synthetases? Proc. Natl. Acad. Sci. U.S.A. 95, 11295-11300.
  • Schimmel, P. & Kelley, S.O. (2000) Exiting an RNA world. Nat. Struct. Biol. 7, 5-7.
  • Schön, A., Kannangara, C.G., Gough, S. & Söll, D. (1988) Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331, 187-190.
  • Shiba, K. & Schimmel, P. (1992) Functional assembly of a randomly cleaved protein. Proc. Natl. Acad. Sci. U.S.A. 89, 1880-1884.
  • Smith, D.R., Doucette-Stamm, L.A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., Bashirzadeh, R., Blakely, D., Cook, R., Gilbert, K., Harrison, D., Hoang, L., Keagle, P., Lumm, W., Pothier, B., Qiu, D., Spadafora, R., Vicaire, R., Wang, Y., Wierzbowski, J., Gibson, R., Jiwani, N., Caruso, A., Bush, D. & Reeve, J.N. (1997) Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: Functional analysis and comparative genomics. J. Bacteriol. 179, 7135-7155.
  • Söll, D. & Schimmel, P.R. (1974) Aminoacyl-tRNA synthetases. The Enzymes 10, 489-538.
  • Stathopoulos, C., Li, T., Longman, R., Vothknecht, U.C., Becker, H.D., Ibba, M. & Söll, D. (2000) One polypeptide with two aminoacyl-tRNA synthetase activities. Science 287, 479-482.
  • Stathopoulos, C., Jacquin-Becker, C., Becker, H.D., Li, T., Ambrogelly, A. Longman, R. & Söll, D. (2001) Methanococcus jannaschii prolyl-cysteinyl-tRNA synthetase possesses overlapping amino acid binding sites. Biochemistry 40, 46-52.
  • Tumbula, D.L., Vothknecht, U.C., Kim, H.-S., Ibba, M., Min, B., Li, T., Pelaschier, J., Stathopoulos, C., Becker, H.D. & Söll, D. (1999) Archaeal aminoacyl-tRNA synthesis: Diversity replaces dogma. Genetics 152, 1269-1276.
  • Tumbula, D.L., Becker, H.D., Chang, W.-Z. & Söll, D. (2000) Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407, 106-110.
  • White, B.N. & Bayley, S.T. (1972) Further codon assignments in an extremely halophilic bacterium using a cell-free protein-synthesizing system and a ribosomal binding assay. Can. J. Biochem. 50, 600-609.
  • Wilcox, M. & Nirenberg, M. (1968) Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc. Natl. Acad. Sci. U.S.A. 61, 229-236.
  • Woese, C.R., Olsen, G., Ibba, M. & Söll, D. (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202-236.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv48i2p313kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.