Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 1 | 163-173
Article title

Translocation of polysialic acid across model membranes: Kinetic analysis and dynamic.

Title variants
Languages of publication
Transmembrane translocation of polyion homopolymers takes place in the case of polyanionic polysialic acid (polySia), polyanionic polynucleotides and polycationic polypeptides. The purpose of this work was to determine the role of membrane electrical parameters on the kinetics of polyion translocation, the influence of polysialic acid on ion adsorption on positively charged membrane surface and the dynamics of the phospholipid hydrocarbon chains and choline group by using 1H-NMR. The analysis of polyion translocation was performed by using the electrical equivalent circuit of the membrane for the initial membrane potential equal to zero. The changes in polysialic acid flux was up to 75% after 1 ms in comparison with the zero-time flux. Both a decrease of membrane conductance and an increase of polyion chain length resulted in the diminution of this effect. An increase of praseodymium ions adsorption to positively charged liposomes and an increase of the rate of segmental movement of the -CH2 and -CH3 groups, and the choline headgrup of lipid molecules, was observed in the presence of polySia. The results show that the direction of the vectorial polyion translocation depends both on the membrane electrical properties and the degree of polymerization of the polymer, and that polysialic acid can modulate the degree of ion adsorption and the dynamics of membrane lipids.
Physical description
  • Department of Physics, Technical University, Zielona Góra, Poland
  • Department of Biophysics, Pedagogical University, Zielona Góra, Poland
  • Department of Biophysics, Pedagogical University, Zielona Góra, Poland
  • nstitute of Physics, Technical University, Wrocław, Poland
  • 1. Troy, F.A., Janas, T., Janas, T. & Merker, R.I. (1990) Topology of the poly-α-2,8-sialyltransferase in E. coli K1 and energetics of polysialic acid chain translocation across the inner membrane. Glycoconjugate J. 7, 383.
  • 2. Troy, F.A., Janas, T., Janas, T. & Merker, R.I. (1991) Vectorial translocation of polysialic acid chains across the inner membrane of Escherichia coli K1. FASEB J. 5, 6835.
  • 3. Rutishauser, U. & Landmesse, L. (1996) Polysialic acid in the vertebrate nervous system: A promoter of plasticity in cell-cell interactions. Trends Neurosci. 19, 422-427.
  • 4. Michon, F., Brisson, J. & Jennings, H. (1987) Conformational differences between linear α(2-8)-linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharide. Biochemistry 26, 8399-8405.
  • 5. Boulnois, G.J., Roberts, I.S., Hodge, R., Hardy, K.R., Jann, K.B. & Timmis, K.N. (1987) Analysis of the K1 capsule biosynthesis genes of Escherichia coli: Definition of three functional regions for capsule production. Mol. Gen. Genet. 208, 242-246.
  • 6. Silver, R.P., Finn, C.W., Vann, W.F., Aaronson, W., Schneerson, R., Kretchmer, P.J. & Garon, C.F. (1981) Molecular cloning of the K1 capsular polysaccharide genes of E. coli. Nature 289, 696-698.
  • 7. Kiss, J.Z. & Rougon, G. (1997) Cell biology of polysialic acid. Curr. Opin. Neurobiol. 7, 640-646.
  • 8. Rutishauser, U. (1998) Polysialic acid at the cell surface: Biophysics in service of cell interactions and tissue plasticity. J. Cell. Biochem. 70, 304-312.
  • 9. Grinius, L. (1980) Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett. 113, 1-10.
  • 10. Sukharev, S.I., Klenchin, V.A., Serov, S.M., Chernomordik, L.V. & Chizmadzhev, Y.A. (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys. J. 63, 1320-1327.
  • 11. Xie, T.D., Sun, L. & Tsong, T.Y. (1990) Study of mechanisms of electric field-induced DNA transfection. DNA entry by surface binding and diffusion through membrane pores. Biophys. J. 58, 13-19.
  • 12. Hui, S.W., Stoicheva, N. & Zhao, Y.L. (1996) High-efficiency loading, transfection, and fusion of cells by electroporation in two-phase polymer systems. Biophys. J. 71, 1123-1130.
  • 13. Hodkin, A.L. & Huxley, A.F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500-544.
  • 14. Mullens, L.J. & Noda, K. (1963) The influence of sodium-free solutions on the membrane potential of frog muscle fibers. J. Gen. Physiol. 47, 117-132.
  • 15. Kishimoto, U., Kami-Ike, N. & Takeuchi, Y. (1981) A quantitative expression of the electrogenic pump and its possible role in the excitation of Chara internodes; in: The Biophysical Approach to Excitable Systems (Adleman, W.J. & Goldman, D.E., eds.) pp. 165-181, Plenum Press, New York.
  • 16. Deslauriers, R. & Smith, C.P. (1981) The multinuclear NMR approach to peptides: Structures, conformations, and dynamics; in: Biological Magnetic Resonance (Berliner, J.L. & Reuben, J., eds.) pp. 243-344, Plenum Press, New York.
  • 17. Roberts, J.K.M. & Jardetzky, O. (1985) Nuclear magnetic resonance spectroscopy in biochemistry, in: Modern Physical Methods in Biochemistry (Neuberger, A. & Deenen, L.L.M., eds.) pp. 1-64, Elsevier, New York.
  • 18. Schuh, J.R. & Chan, S.I. (1982) Nuclear Magnetic Resonance, in Methods of Experimental Physics; in Biophysics (Ehrenstein, G. & Lecar, H., eds.) pp. 1 - 51, Academic Press, New York.
  • 19. Ghosh, P., Hutadilok, N. & Adam, N. (1994) Interaction of hyaluronan (hyaluronic acid) with phospholipids as determined by gel permeation chromatography, multi-angle laser-light-scattering photometry and 1H-NMR spectroscopy. Int. J. Biol. Macromol. 16, 237-244.
  • 20. Darke, A., Finer, E.G., Moorhouse, R. & Rees, D.A. (1975) Studies of hyaluronate solutions by nuclear magnetic relaxation measurements. Detection of covalently-defined, stiff segments within the flexible chains. J. Mol. Biol. 99, 477-486.
  • 21. Kuczera, J., Gabrielska, J., Kral, T.E. & Przestalski, S. (1997) A synergistic effect of select organotin compounds and ionic surfactants on liposome membranes. Appl. Organomet. Chem. 11, 591-600.
  • 22. Rohr, T.E. & Troy, F.A. (1980) Structure and biosynthesis of surface polymers containing polysialic acid in Escherichia coli. J. Biol. Chem. 255, 2332-2342.
  • 23. Weisgerber, Ch. & Troy, F.A. (1990) Biosynthesis of the polysialic acid capsule in Escherichia coli K1. J. Biol. Chem. 265, 1578-1587.
  • 24. Jones, I.C. & Hunt, G.R.A. (1985) A 31P- and 1H-NMR investigation into the mechanism of bilayer permeability induced by the action of phospholipase A2 on phosphatidylcholine vesicles. Biochim. Biophys. Acta 820, 48-57.
  • 25. Kaszuba, M. & Hunt, G.R.A. (1990) 31P- and 1H-NMR investigations of the effect of n-alcohols on hydrolysis by phospholipase A2 of phospholipid vesicular membranes. Biochim. Biophys. Acta 1030, 88-93.
  • 26. Gabrielska, J., Sarapuk, J. & Przestalski, S. (1997) Role of hydrophobic and hydrophilic interactions of organotin and organolead compounds with model lipid membranes. Z. Naturforsch. 52c, 209 - 216.
  • 27. Piemi, M.P.Y., Korner, D., Benita, S. & Marty, J-P. (1999) Positively and negatively charged submicron emulsions for enchanced topical delivery of antifungal drugs. J. Control. Release 58, 177-187.
  • 28. Gabrielska, J. & Gruszecki, W.I. (1996) Zeaxanthin (dihydroxy-β-caroten) but not β-carotene rigidifies lipid membranes: A 1H-NMR study of carotenoid- egg phosphatidylcholine liposomes. Biochim. Biophys. Acta 1285, 167-174.
  • 29. Martin, F.G. & Harvey, W.R. (1994) Ionic circuit analysis of K+/H+ antiport and amino acid/K+ symport energized by a proton-motive force in Manduca sexta larval midgut vesicles. J. Exp. Biol. 196, 77-92.
  • 30. Martin, F.G. (1992) Circuit analysis of transmembrane voltage relationships in V-ATPase- coupled ion movements. J. Exp. Biol. 172, 387-402.
  • 31. Trela, Z., Janas, T., Witek, S. & Przestalski, S. (1990) Effects of quaternary ammonium salts on membrane potential and electric conductance in internodal cells of Nitellopsis obtusa. Physiol. Plant. 78, 57-60.
  • 32. Tomicki, B. (1999) Steady-state diffusion and the cell resting potential. Eur. Biophys. J. 28, 330-337.
  • 33. Klenchin, V.A., Sukharev, S.I., Serov, S.M., Chernomordik, L.V. & Chizmadzhev, Y.A. (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys. J. 60, 804-811.
  • 34. Labedan, B., Heller, K.B., Jasaitis, A.A., Wilson, T.H. & Goldberg, E.B. (1980) A membrane potential threshold for phage T4 DNA injection. Biochem. Biophys. Res. Commun. 93, 625-630.
  • 35. Janas, T., Walińska, K. & Janas, T. (1998) Electroporation of polyprenol-phosphatidylcholine bilayer lipid membranes. Bioelectrochem. Bioenerg. 45, 215-220.
  • 36. Janas, T., Nowotarski, K., Gruszecki, W.I. & Janas, T. (2000) The effect of hexadecaprenol on molecular organisation and transport properties of model membranes. Acta Biochim. Polon. 47, 661-673.
  • 37. Zenke, M., Steinlein, P., Wagner, E., Cotten, M., Beug, H. & Birnstiel, M.L. (1990) Receptor-mediated endocytosis of transferrin-polycation conjugates: An efficient way to introduce DNA into hematopoietic cells. Proc. Natl. Acad. Sci. U.S.A. 87, 3655-3659.
  • 38. Wymn, T.B., Nicol, F., Zelphati, O., Scaria, P.V., Plank, C. & Szoka, F.C. (1997) Design, synthesis and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 36, 3008-3017.
  • 39. Midoux, P. & Monsigny, M. (1999) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem. 10, 406-411.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.