Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 4 | 993-1005
Article title

The KRR1 gene encodes a protein required for 18S rRNA synthesis and 40S ribosomal subunit assembly in Saccharomyces cerevisiae.

Title variants
Languages of publication
The newly discovered Saccharomyces cerevisiae gene KRR1 (YCL059c) encodes a protein essential for cell viability. Krr1p contains a motif of clustered basic amino acids highly conserved in the evolutionarly distant species from yeast to human. We demonstrate that Krr1p is localized in the nucleolus. The KRR1 gene is highly expressed in dividing cells and its expression ceases almost completely when cells enter the stationary phase. In vivo depletion of Krr1p leads to drastic reduction of 40S ribosomal subunits due to defective 18S rRNA synthesis. We propose that Krr1p is required for proper processing of pre-rRNA and the assembly of preribosomal 40S subunits.
Physical description
  • Institute of Biochemistry and Biophysics, Polish Academy of Science, Warszawa, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Science, Warszawa, Poland
  • Adams, A., Gottschling, D.E., Kaiser, C.A. & Stearns, T. (eds.) (1997) Methods in Yeast Genetics. A Cold Spring Harbor Laboratory Course, Manual, Cold Spring Harbor Laboratory Laboratory Press.
  • Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (1997) Current Protocols in Molecular Biology, vols. 1-3, Green Publishing and Wiley- Interscience, New York.
  • Baudin-Baillieu, A., Tollervey, D., Cullin, C. & Lacroute, F. (1997) Functional analysis of Rrp7p, an essential yeast protein involved in pre-rRNA processing and ribosome assembly. Mol. Cell. Biol. 17, 5023-5032.
  • Burns, N., Grimwade, B., Ross-Macdonald, P.B., Choi, E.-Y., Finberg, K., Roeder, G.S. & Snyder, M. (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8, 1087-1105.
  • Gietz, R.D., Schiestl, H., Willem, A.R. & Woods, R.A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360.
  • Gromadka, R., Kaniak, A., Słonimski, P.P. & Rytka, J. (1996) A novel cross-phylum family of proteins comprises a KRR1 (YCL059c) gene which is essential for viability of Saccharomyces cerevisiae cells. Gene 171, 27-32.
  • Hoffman, Ch.S. & Winston, F. (1987) A ten minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267-272.
  • Izaurralde, E. & Adam, S. (1998) Transport of macromolecules between the nucleus and the cytoplasm. RNA 4, 351-364.
  • Johnston, M. & Davis, R.W. (1984) Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1440-1448.
  • Ju, Q. & Warner, J.R. (1994) Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae. Yeast 10, 151-157.
  • Kief, D.R. & Warner, J.R. (1981) Coordinate control of synthesis of ribosomal nucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell. Biol. 1, 1007-1015.
  • Kressler, D., de la Cruz, J., Rojo, M. & Linder, P. (1998) Dbp6p is an essential ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 1855-1865.
  • Nasr, F., Becam, A.-M., Słonimski, P.P. & Herbert, Ch.J. (1994) YBR1012 an essential gene from S.cerevisiae: Construction of an RNA antisense conditional allele and isolation of multicopy suppressor. Sciences de la vie/Life Sciences 317, 607-613.
  • Nierras, C.R., Liebman, S.W. & Warner, J.R. (1997) Does Saccharomyces need an organized nucleolus? Chromosoma 105, 444-451.
  • Ohno, M., Fornerod, M. & Mattaj, I.W. (1998) Nucleocytoplasmic transport: The last 200 nanometers. Cell 92, 327-336.
  • Orr-Weaver, T.L., Szostak, J.W. & Rothstain, R.J. (1983) Genetic applications of yeast transformation with linear and gapped plasmids, Methods Enzymol. 101, 228-245.
  • Park, E.C., Finley, D. & Szostak, J.W. (1992) A strategy for the generation of conditional mutations by protein destabilization. Proc. Natl. Acad. Sci. U.S.A. 89, 1249-1252.
  • Petes, T.D. (1979) Yeast ribosomal DNA-genes are located on chromosome XII. Proc. Natl. Acad. Sci. U.S.A. 76, 410-414.
  • Pringle, J.R., Adams, A.E.M., Drubin, D.G. & Haarer, B.K. (1991) Immunofluorescence methods for yeast. Methods Enzymol. 194, 565-602.
  • Rose, M.D., Winston, F. & Hieter, P. (1990) Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, New York.
  • Rout, M.P., Blobel, G. & Aitchison, J.D. (1997) A distinct nuclear import pathway used by ribosomal proteins. Cell 89, 715-725.
  • Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Press, Cold Spring Harbor, New York.
  • Sikorski, R.S. & Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.
  • Thomas, B.J. & Rothstein, R. (1989) The genetic control of direct-repeat recombination in Saccharomyces: The effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123, 725-738.
  • Venema, J. & Tollervey, D. (1995) Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11, 1629-1650.
  • Verschoor, A., Warner, J.R., Srivastava, S., Grassucci, R.A. & Frank, J. (1998) Three-dimensional structure of the yeast ribosome. Nucleic Acids Res. 26, 655-661.
  • Waldron, C. & Lacroute, F. (1975) Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122, 855-865.
  • Waldron, C. (1977) Synthesis of ribosomal and transfer ribonucleic acid in yeast during a nutritional shift up. J. Gen. Microbiol. 98, 215-221.
  • Warner, J.R. (1989) Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53, 256-271.
  • Weaver, P.L., Sun, C. & Chang, T.-H. (1997) Dbp3p, a putative RNA helicase in Saccharomyces cerevisiae, is required for efficient pre-rRNA processing predominantly at site A3. Mol. Cell. Biol. 17, 1354-1365.
  • Weis, K. (1998) Importins and exportins: how to get in and out of the nucleus. Trends Biochem. Sci. 23, 185-189.
  • Wilson, I.A., Niman, H.L., Houghten, R.A., Cherenson, A.R., Connoly, M.L. & Lerner, R.A. (1984) The structure of an antigenic determinant in a protein. Cell 37, 767-778.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.