Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 4 | 941-949
Article title

Two-electron reduction of nitroaromatic compounds by Enterobacter cloacae NAD(P)H nitroreductase: Description of quantitative structure-activity relationships.

Title variants
Languages of publication
Enterobacter cloacae NAD(P)H:nitroreductase catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 104 M-1s-1 to 107 M-1s-1 , and oxidizing 2 moles NADH per mole mononitrocompound. Oxidation of excess NADH by polynitrobenzenes including explosives 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), has been observed as a slower secondary process, accompanied by O2 consumption. This type of 'redox cycling' was not related to reactions of nitroaromatic anion-radicals, but was caused by the autoxidation of relatively stable reaction products. The logs kcat/Km of all the compounds examined exhibited parabolic dependence on their enthalpies of single-electron- or two-electron (hydride) reduction, obtained by quantum mechanical calculations. This type of quantitative structure-activity relationships shows that the reactivity of nitroaromatics towards E. cloacae nitroreductase depends mainly on their hydride accepting properties, but not on their particular structure, and does not exclude the possibility of multistep hydride transfer.

Physical description
  • Institute of Biochemistry, Mokslininku 12, Vilnius 2600, Lithuania
  • Department of Chemistry, University of Kentucky, 106 Chemistry-Physics Building, Lexington, KY 40506-0055, U.S.A.
  • Institute of Biochemistry, Mokslininku 12, Vilnius 2600, Lithuania
  • Institute of Biochemistry, Mokslininku 12, Vilnius 2600, Lithuania
  • Department of Chemistry, University of Kentucky, 106 Chemistry-Physics Building, Lexington, KY 40506-0055, U.S.A.
  • Institute of Biochemistry, Mokslininku 12, Vilnius 2600, Lithuania
  • 1. Spain, J.C. (1995) Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49, 523-555.
  • 2. Orna, V.M. & Mason, R.P. (1989) Correlation of kinetic parameters of nitroreductase enzymes with redox properties of nitroaromatic compounds. J. Biol. Chem. 264, 12379- 12384.
  • 3. Čenas, N., Anusevičius, Ž., Bironaié, D., Bachmanova, G.I., Archakov, A.I. & Ollinger, K. (1994) The electron transfer reactions of NADPH:cytochrome P450 reductase with nonphysiological oxidants. Arch. Biochem. Biophys. 315, 400-406.
  • 4. Anusevičius, Ž., Martinez-Julvez, M., Genzor, C.G., Nivinskas, H., Gomez-Moreno, C. & Čenas, N. (1997) Electron transfer reactions of Anabaena PCC7119 ferredoxin:NADP+ reductase with nonphysiological oxidants. Biochim. Biophys. Acta 1320, 247-255.
  • 5. Bironaité, D.A., Čenas, N.K. & Kulys, J.J. (1991) The rotenone-insensitive reduction of quinones and aromatic nitrocompounds by mitochondrial NADH:ubiquinone reductase. Biochim. Biophys. Acta 1060, 203-209.
  • 6. Peterson, F.J., Mason, R.P., Hovsepian, J. & Holtzman, J.L. (1979) Oxygen-sensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J. Biol. Chem. 254, 4009-4014.
  • 7. Knox, R.J., Friedlos, F., Biggs, P.J., Flitter, W.D., Gaskell, M., Goddard, P., Davies, L. & Jarman, M. (1993) Identification, synthesis and properties of 5-(aziridin-1-yl)-2-nitro- 4-nitrosobenzamide, a novel DNA crosslinking agent derived from CB1954. Biochem. Pharmacol. 46, 797-803.
  • 8. Bryant, C. & DeLuca, M. (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J. Biol. Chem. 266, 4119-4125.
  • 9. Marcus, R.A. & Sutin, N. (1985) Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265-322.
  • 10. Koder, R.L. & Miller, A.-F. (1998) Steady-state kinetic mechanism, stereospecificity, substrate and inhibitor specificity of Enterobacter cloacae nitroreductase. Biochim. Biophys. Acta 1387, 395-405.
  • 11. Basran, A., French, C.E., Williams, R.E., Nicklin, S. & Bruce, N.C. (1998) Degradation of nitrate ester and nitroaromatic explosives by Enterobacter cloacae PB2. Biochem. Soc. Trans. 26, 680-685.
  • 12. French, C.E., Nicklin, S. & Bruce, N.C. (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl. Environ. Microbiol. 64, 2864-2868.
  • 13. Koder, R.L. & Miller, A.-F. (1998) Overexpression, isotopic labelling and spectral characterization of Enterobacter cloacae nitroreductase. Protein Exp. Pur. 13, 53-60.
  • 14. Miškiniene, V., Šarlauskas, J., Jacquot, J.-P. & Čénas, N. (1998) Nitroreductase reactions of Arabidopsis thaliana thioredoxin reductase. Biochim. Biophys. Acta 1366, 275-284.
  • 15. Anusevičius, Ž., Šarlauskas, J., Nivinskas, H., Segura-Aguilar, J. & Čénas, N. (1998) DT-diaphorase catalyzes N-denitration and redox cycling of tetryl. FEBS Lett. 436, 144- 148.
  • 16. Meyer, R. (1987) Explosives, 3rd edn., VCH Verlagsgessellschaft mbH, Weinheim.
  • 17. Van Alphen, J. (1932) Dimorphism of tetranitrobiphenyl derivatives. I. Rec. Trav. Chim. Pays-Bas 51, 179-184.
  • 18. Urbanski, T. (1964) Chemie und Technologie der Explosivstoffe. Bd. 3. VEB Deutscher Verlag, Leipzig.
  • 19. Castorina, T.C., Holahan, F.S., Graybush, R.J., Kaufman, J.V.R. & Helf, S. (1960) Carbon-14 trace studies of the nitrolysis of hexamethylenetetramine. J. Am. Chem. Soc. 82, 1617-1623.
  • 20. Darchen, A. & Moinet, C. (1977) Mecanisme E.C.E. de reduction du para-dinitrobenzene en para-nitrophenylhydroxylamine. J. Electroanal. Chem. 78, 81-88.
  • 21. Fiorella, P.D. & Spain, J.C. (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligens JS52. Appl. Environ. Microbiol. 63, 2007-2015.
  • 22. Hajos, A.K.D. & Winston, G.W. (1991) Dinitropyrene nitroreductase activity of purified NAD(P)H-quinone oxidoreductase: Role in rat liver cytosol and induction by Aroclor-1254 pretreatment. Carcinogenesis 12, 697-702.
  • 23. Wardman, P. (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 18, 1637-1755.
  • 24. Lien, E.J., Ren, S., Bui, H.-H. & Wang, R. (1999) Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic. Biol. Med. 26, 285-294.
  • 25. Carlson, B.W. & Miller, L.L. (1985) Mechanism of the oxidation of NADH by quinones. Energetics of one-electron and hydride routes. J. Am. Chem. Soc. 107, 479-485.
  • 26. Fukuzumi, S., Koumitsu, K., Hironaka, T. & Tanaka, T. (1987) Energetic comparison between photoinduced electron-transfer reactions from NADH model to organic and inorganic oxidants and hydride-transfer reactions from NADH model compounds to p-benzoquinone derivatives. J. Am. Chem. Soc. 109, 305-315.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.