Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 4 | 1037-1044
Article title

The DFF40/CAD endonuclease and its role in apoptosis.

Title variants
Languages of publication
The sequential generation of large-scale DNA fragments followed by internucleosomal chromatin fragmentation is a biochemical hallmark of apoptosis. One of the nucleases primarily responsible for genomic DNA fragmentation during apoptosis is called DNA Fragmentation Factor 40 (DFF40) or Caspase-activated DNase (CAD). DFF40/CAD is a magnesium-dependent endonuclease specific for double stranded DNA that generates double strand breaks with 3'-hydroxyl ends. DFF40/CAD is activated by caspase-3 that cuts the nuclease's inhibitor DFF45/ICAD. The nuclease preferentially attacks chromatin in the internucleosomal linker DNA. However, the nuclease hypersensitive sites can be detected and DFF40/CAD is potentially involved in large-scale DNA fragmentation as well. DFF40/CAD-mediated DNA fragmentation triggers chromatin condensation that is another hallmark of apoptosis.

Physical description
  • Department of Experimental and Clinical Radiobiology, Center of Oncology, 44-100 Gliwice, Poland
  • Arends, M.J., Morris, R.G. & Wyllie, A.H. (1990) Apoptosis. The role of the endonuclease. Am. J. Pathol. 136, 593-608.
  • Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. (1999) Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15, 269-290.
  • Cohen, G.M., Sun, X.M., Fearnhead, H., MacFarlane, M., Brown, D.G., Snowden, R.T. & Dinsdale, D. (1994) Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J. Immunol. 153, 507-516.
  • Durrieu, F., Samejima, K., Fortune, J.M., Kandels- Lewis, S., Osheroff, N. & Earnshaw, W.C. (2000) DNA topoisomerase IIa interacts with CAD nuclease and is involved in chromatin condensation during apoptotic execution. Curr. Biol. 10, 923-926.
  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. & Nagata, S. (1998) A caspase- activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50.
  • Filipski, J., Leblanc, J., Youdale, T., Sikorska, M. & Walker, P.R. (1990) Periodicity of DNA folding in higher order chromatin structures. EMBO J. 9, 1319-1327.
  • Gu, J., Dong, R.P., Zhang, C., McLaughlin, D.F., Wu, M.X. & Schlossman, S.F. (1999) Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40. J. Biol. Chem. 274, 20759-20762.
  • Halenbeck, R., MacDonald, H., Roulston, A., Chen, T.T., Conroy, L. & Williams, L.T. (1998) CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF45. Curr. Biol. 8, 537-540.
  • Hengartner, M.O. (2000) The biochemistry of apoptosis. Nature 407, 770-776.
  • Inohara, N., Koseki, T., Chen, S., Wu, X. & Nunez, G. (1998) CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J. 17, 2526-2533.
  • Inohara, N., Koseki, T., Chen, S., Benedict, M.A. & Nunez, G. (1999) Identification of regulatory and catalytic domains in the apoptosis nuclease DFF40/CAD. J. Biol. Chem. 274, 270-274.
  • Jacobson, M.D., Weil, M. & Raff, M.C. (1997) Programmed cell death in animal development. Cell 88, 347-354.
  • Khodarev, N.N., Sokolova, I.A. & Vaughan, A.T.M. (1998) Mechanisms of induction of apoptotic DNA fragmentation. Int. J. Radiat. Biol. 73, 455-467.
  • Lagarkova, M.A., Iarovaia, O.V. & Razin, S.V. (1995) Large-scale fragmentation of mammalian DNA in the course of apoptosis proceeds via excision of chromosomal DNA loops and their oligomers. J. Biol. Chem. 270, 20239- 20241.
  • Li, T.-K., Chen, A.Y., Yu, C., Mao, Y., Wang, H. & Liu, L.F. (1999) Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev. 13, 1553-1560.
  • Liu, X., Zou, H., Slaughter, C. & Wang, X. (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184.
  • Liu, X., Li, P., Widłak, P., Zou, H., Luo, X., Garrard, W.T. & Wang, X. (1998) DFF40 induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. U.S.A. 95, 8461-8466.
  • Liu, X., Zou, H., Widłak, P., Garrard, W.T. & Wang, X. (1999) Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interactions with histone H1. J. Biol. Chem. 274, 13836-13840.
  • Lugovskoy, A.A., Zhou, P., Chou, J.J., McCarty, J.S., Li, P. & Wagner, G. (1999) Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Cell 99, 747-755.
  • Montague, J.W. & Cidlowski, J.A. (1996) Cellular catabolism in apoptosis: DNA degradation and endonuclease activation. Experientia 52, 957- 962.
  • Mukae, N., Enari, M., Sakahira, H., Fukuda, Y., Inazawa, J., Toh, H. & Nagata, S. (1998) Molecular cloning and characterization of human caspase-activated DNase. Proc. Natl. Acad. Sci. U.S.A. 95, 9123-9128.
  • Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355-365.
  • Oberhammer, F., Wilson, J.W., Dive, C., Morris, I.D., Hickman, J.A., Wakeling, A.E., Walker, P.R. & Sikorska, M. (1993) Apoptotic death in epithelial cells: Cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12, 3679-3684.
  • Otomo, T., Sakahira, H., Uegaki, K., Nagata, S. & Yamazaki, T. (2000) Structure of the heterodimeric complex between CAD domains of CAD and ICAD. Nat. Struct. Biol. 7, 658- 662.
  • Sahara, S., Aoto, M., Eguchi, Y., Imamoto, N., Yoneda, Y. & Tsujimoto, Y. (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401, 168-173.
  • Sakahira, H., Enari, M. & Nagata, S. (1999a) Functional differences of two forms of the inhibitor of caspase-activated DNase, ICAD-L and ICAD-S. J. Biol. Chem. 274, 15740-15744.
  • Sakahira, H., Enari, M., Ohsawa, Y., Uchiyama, Y. & Nagata, S. (1999b) Apoptotic nuclear morphological change without DNA fragmentation. Curr. Biol. 9, 543-546.
  • Susin, S.A., Lorenzo, H.K., Zamzani, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Constantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M. & Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446.
  • Widłak, P., Li, P., Wang, X. & Garrard, W.T. (2000) Cleavage preferences of the apoptotic endonuclease DFF40 (Caspase-activated DNase or Nuclease) on naked DNA and chromatin substrates. J. Biol. Chem. 275, 8226-8232.
  • Widłak, P. (2000) DFF40/CAD hypersensitive sites are potentially involved in high molecular weight DNA fragmentation during apoptosis. Cell. Mol. Biol. Lett. 5, 373-379.
  • Widłak, P. & Garrard, W.T. (2001) Ionic and cofactor requirements for the activity of the apoptotic endonuclease DFF40/CAD. Mol. Cell. Biochem, in press.
  • Wyllie, A.H., Kerr, J.F.R. & Currie, A.R. (1980) Cell death: The significance of apoptosis. Int. Rev. Cytol. 68, 251-306.
  • Wyllie, A.H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555- 556.
  • Villa, P., Kaufmann, S.H. & Earnshaw, W.C. (1997) Caspases and caspase inhibitors. Trends Biochem. Sci. 22, 388-392.
  • Zhang, J., Liu, X., Scherer, D.C., van Kaer, L., Wang, X. & Xu, M. (1998) Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc. Natl. Acad. Sci. U.S.A. 95, 12480- 12485.
  • Zhang, J., Wang, X., Bove, K.E. & Xu, M. (1999) DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wild-type control cells. J. Biol. Chem. 274, 37450-37454.
  • Zhivotovsky, B., Wade, D., Nicotera, P. & Orrenius, S. (1994) Role of nucleases in apoptosis. Int. Arch. Allergy Immunol. 105, 333-338.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.