Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 3 | 705-723

Article title

Regulation of Ca2+ release from internal stores in cardiac and skeletal muscles.

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
It is widely accepted that Ca2+ is released from the sarcoplasmic reticulum by a specialized type of calcium channel, i.e., ryanodine receptor, by the process of Ca2+-induced Ca2+ release. This process is triggered mainly by dihydropyridine receptors, i.e., L-type (long lasting) calcium channels, directly or indirectly interacting with ryanodine receptor. In addition, multiple endogenous and exogenous compounds were found to modulate the activity of both types of calcium channels, ryanodine and dihydropyridine receptors. These compounds, by changing the Ca2+ transport activity of these channels, are able to influence intracellular Ca2+ homeostasis. As a result not only the overall Ca2+ concentration becomes affected but also spatial distribution of this ion in the cell. In cardiac and skeletal muscles the release of Ca2+ from internal stores is triggered by the same transport proteins, although by their specific isoforms. Concomitantly, heart and skeletal muscle specific regulatory mechanisms are different.

Year

Volume

47

Issue

3

Pages

705-723

Physical description

Dates

published
2000
received
2000-07-31
accepted
2000-08-01

Contributors

  • Department of Muscle Biochemistry, M. Nencki Institute of Experimental Biology, L. Pasteura 3, 02-093 Warszawa, Poland

References

  • Ashley, R.H. (1989) Activation and conductance properties of ryanodine-sensitive calcium channels from brain microsomal membranes incorporated into planar lipid bilayers. J. Membr. Biol. 111, 179-189.
  • Ashley, R.H. & Williams, A.J. (1990) Divalent cation activation and inhibition of single calcium release channels from sheep cardiac sarcoplasmic reticulum. J. Gen. Physiol. 95, 981-1005.
  • Avila, G. & Dirksen, R.T. (2000) Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca2+ channel. J. Gen. Physiol. 115, 467-480.
  • Balog, E.M., Fruen, B.R., Kane, P.K. & Louis, C.F. (2000) Mechanisms of Pi regulation of the skeletal muscle SR Ca2+ release channel. Am. J. Physiol. Cell Physiol. 278, C601-C611.
  • Berg, J.M. & Shi, Y. (1996) The galvanization of biology: A growing appreciation for the roles of zinc. Science 271, 1081-1085.
  • Bers, D.M. (1991) Excitation-Contraction coupling and Cardiac Contractile Force; pp. 119-148. Kluwer Academic Publishers, Dordrecht, Boston, London.
  • Blazev, R. & Lamb, G.D. (1999a) Adenosine inhibits depolarization-induced Ca2+ release in mammalian skeletal muscle. Muscle Nerve 22, 1674-1683.
  • Blazev, R. & Lamb, G.D. (1999b) Low [ATP] and elevated [Mg2+] reduce depolarization-induced Ca2+ release in rat skinned skeletal muscle fibres. J. Physiol. (London) 520, 203-215.
  • Boixel, C., Tessier, S., Pansard, Y., Lang- Lazdunski, L., Mercadier, J.J. & Hatem, S.N. (2000) Tyrosine kinase and protein kinase C regulate L-type Ca2+ current cooperatively in human atrial myocytes. Am. J. Physiol. Heart Circ. Physiol. 278, H670-H676.
  • Bunemann, M., Gerhardstein, B.L., Gao, T. & Hosey, M.M. (1999) Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the β2 subunit. J. Biol. Chem. 274, 33851-33854.
  • Campbell, K.P., Knudson, C.M., Imagawa, T., Leung, A.T., Sutko, J.L., Kahl, S.D., Raab, C.R. & Madson, L. (1987) Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J. Biol. Chem. 262, 6460-6463.
  • Caswell, A.H., Brandt, N.R., Brunschwig, J.P. & Purkerson, S. (1991) Localization and partial characterization of the oligomeric disulfide- linked molecular weight 95000 protein (triadin) which binds the ryanodine and dihydropyridine receptors in skeletal muscle triadic vesicles. Biochemistry 30, 7507-7513.
  • Cheah, A.M. (1981) Effect of long chain unsaturated fatty acids on the calcium transport of sarcoplasmic reticulum. Biochim. Biophys. Acta 648, 113-119.
  • Chen, S.R., Ebisawa, K., Li, X. & Zhang, L. (1998) Molecular identification of the ryanodine receptor Ca2+ sensor. J. Biol. Chem. 273, 14675-14678.
  • Chen, S.R., Zhang, L. & MacLennan, D.H. (1992) Characterization of a Ca2+ binding and regulatory site in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 267, 23318-23326.
  • Chen, S.R., Zhang, L. & MacLennan, D.H. (1993) Antibodies as probes for Ca2+ activation sites in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 268, 13414-13421.
  • Chen, S.R.W., Li, X., Ebisawa, K. & Zhang, L. (1997) Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J. Biol. Chem. 272, 24234-24246.
  • Cheng, H., Lederer, W.J. & Cannell, M.B. (1993) Calcium sparks: Elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740-744.
  • Cheng, H., Lederer, M.R., Xiao, R.P., Gomez, A.M., Zhou, Y.Y., Ziman, B., Spurgeon, H., Lakatta, E.G. & Lederer, W.J. (1996) Excitation-contraction coupling in heart: New insights from Ca2+ sparks. Cell Calcium 20, 129-140.
  • Chiesi, M., Wrzosek, A. & Grueninger, S. (1994) The role of the sarcoplasmic reticulum in various types of cardiomyocytes. Mol. Cell. Biochem. 130, 159-171.
  • Cho, M.C., Rapacciuolo, A., Koch, W.J., Kobayashi, Y., Jones, L.R. & Rockman, H.A. (1999) Defective beta-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. J. Biol. Chem. 274, 22251-22256.
  • Coronado, R., Morrissette, J., Sukhareva, M. & Vaughan, D.M. (1994) Structure and function of ryanodine receptors. Am. J. Physiol. 266, C1485-C1504.
  • Damron, D.S. & Bond, M. (1993) Modulation of Ca2+ cycling in cardiac myocytes by arachidonic acid. Circ. Res. 72, 376-386.
  • Diaz-Munoz, M., Hamilton, S.L., Kaetzel, M.A., Hazarika, P. & Dedman, J.R. (1990) Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J. Biol. Chem. 265, 15894- 15899.
  • Donoso, P., Aracena, P. & Hidalgo, C. (2000) Sulfhydryl oxidation overrides Mg2+ inhibition of calcium-induced calcium release in skeletal muscle triads. Biophys. J. 79, 279-286.
  • Dutka, T.L. & Lamb, G.D. (2000) Effect of lactate on depolarization-induced Ca2+ release in mechanically skinned skeletal muscle fibers. Am. J. Physiol. Cell Physiol. 278, C517-C525.
  • Eisner, D.A., Trafford, A.W., Diaz, M.E., Overend, C.L. & O'Neil, S.C. (1998) The control of Ca release from the cardiac sarcoplasmic reticulum: Regulation versus autoregulation. Cardiovasc. Res. 38, 589-604.
  • el-Hayek, R., Valdivia, C., Valdivia, H.H., Hogan, K. & Coronado, R. (1993) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by palmitoyl carnitine. Biophys. J. 65, 779-789.
  • Endo, M., Tanaka, M. & Ogawa, Y. (1970) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228, 34-36.
  • Fabiato, A. (1985a) Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85, 189-246.
  • Fabiato, A. (1985b) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85, 247-289.
  • Favero, T.G., Zable, A.C., Bowman, M.B., Thompson, A. & Abramson, J.J. (1995) Metabolic end products inhibit sarcoplasmic reticulum Ca2+ release and [3H]ryanodine binding. J. Appl. Physiol. 78, 1665-1672.
  • Fitts, R.H. (1994) Cellular mechanisms of muscle fatigue. Physiol. Rev. 74, 49-94.
  • Flucher, B.E. & Franzini-Armstrong, C. (1996) Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc. Natl. Acad. Sci. U.S.A. 93, 8101-8106.
  • Flucher, B.E., Phillips, J.L., Powell, J.A., Andrews, S.B. & Daniels, M.P. (1992) Coordinated development of myofibrils, sarcoplasmic reticulum and transverse tubules in normal and dysgenic mouse skeletal muscle, in vivo and in vitro. Dev. Biol. 150, 266-280.
  • Franzini-Armstrong, C. & Protasi, F. (1997) Ryanodine receptors of striated muscles: A complex channel capable of multiple interactions. Physiol. Rev. 77, 699-729.
  • Fruen, B.R., Mickelson, J.R., Shomer, N.H., Roghair, T.J. & Louis, C.F. (1994) Regulation of the sarcoplasmic reticulum ryanodine receptor by inorganic phosphate. J. Biol. Chem. 269, 192-198.
  • Fuentes, O., Valdivia, C., Vaughan, D., Coronado, R. & Valdivia, H.H. (1994) Calcium-dependent block of ryanodine receptor channel of swine skeletal muscle by direct binding of calmodulin. Cell Calcium 15, 305-316.
  • Galione, A. (1992) Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol. Sci. 13, 304-306.
  • Galione, A., Lee, H.C. & Busa, W.B. (1991) Ca2+-induced Ca2+ release in sea urchin egg homogenates: Modulation by cyclic ADP-ribose. Science 253, 1143-1146.
  • Giannini, G., Clementi, E., Ceci, R., Marziali, G. & Sorrentino, V. (1992) Expression of a ryanodine receptor- Ca2+ channel that is regulated by TGF-beta. Science 257, 91-94.
  • Grabner, M., Dirksen, R.T., Suda, N. & Beam, K.G. (1999) The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J. Biol. Chem. 274, 21913-21919.
  • Groh, S., Marty, I., Ottolia, M., Prestipino, G., Chapel, A., Villaz, M. & Ronjat, M. (1999) Functional interaction of the cytoplasmic domain of triadin with the skeletal ryanodine receptor. J. Biol. Chem. 274, 12278-12283.
  • Gunteski-Hamblin, A.M., Song, G., Walsh, R.A., Frenzke, M., Boivin, G.P., Dorn, 2nd, G.W., Kaetzel, M.A., Horseman, N.D. & Dedman, J.R. (1996) Annexin VI overexpression targeted to heart alters cardiomyocyte function in transgenic mice. Am. J. Physiol. 270, H1091-H1100.
  • Guo, W., Jorgensen, A.O. & Campbell, K.P. (1996a) Triadin, a linker for calsequestrin and the ryanodine receptor. Soc. Gen. Physiol. Ser. 51, 19-28.
  • Guo, W., Jorgensen, A.O., Jones, L.R. & Campbell, K.P. (1996b) Biochemical characterization and molecular cloning of cardiac triadin. J. Biol. Chem. 271, 458-465.
  • Haarmann, C.S., Fink, R.H. & Dulhunty, A.F. (1999) Oxidation and reduction of pig skeletal muscle ryanodine receptors. Biophys. J. 77, 3010-3022.
  • Haase, H., Podzuweit, T., Lutsch, G., Hohaus, A., Kostka, S., Lindschau, C., Kott, M., Kraft, R. & Morano, I. (1999) Signaling from beta-adrenoceptor to L-type calcium channel: Identification of a novel cardiac protein kinase A target possessing similarities to AHNAK. FASEB J. 13, 2161-2172.
  • Hadad, N., Meyer, H.E., Varsanyi, M., Fleischer, S. & Shoshan-Barmatz, V. (1999) Cardiac sarcalumenin: Phosphorylation, comparison with the skeletal muscle sarcalumenin and modulation of ryanodine receptor. J. Membr. Biol. 170, 39-49.
  • Hadad, N., Zable, A.C., Abramson, J.J. & Shoshan-Barmatz, V. (1994) Ca2+ binding sites of the ryanodine receptor/ Ca2+ release channel of sarcoplasmic reticulum. Low affinity binding site(s) as probed by terbium fluorescence. J. Biol. Chem. 269, 24864-24869.
  • Haddad, G.E., Sperelakis, N. & Bkaily, G. (1995) Regulation of the calcium slow channel by cyclic GMP dependent protein kinase in chick heart cells. Mol. Cell. Biochem. 148, 89-94.
  • Hakamata, Y., Nakai, J., Takeshima, H. & Imoto, K. (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 312, 229-235.
  • Harrison, S.M. & Bers, D.M. (1987) The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim. Biophys. Acta 925, 133-143.
  • Hart, J.D. & Dulhunty, A.F. (2000) Nitric oxide activates or inhibits skeletal muscle ryanodine receptors depending on its concentration, membrane potential and ligand binding. J. Membr. Biol. 173, 227-236.
  • Hashii, M., Minabe, Y. & Higashida, H. (2000) cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L-type voltage-activated Ca2+ channels in NG108-15 neuronal cells. Biochem. J. 345, 207-215.
  • He, J.Q., Pi, Y., Walker, J.W. & Kamp, T.J. (2000) Endothelin-1 and photoreleased diacylglycerol increase L-type Ca2+ current by activation of protein kinase C in rat ventricular myocytes. J. Physiol. (London) 524, 807-820.
  • Hua, S.Y., Tokimasa, T., Takasawa, S., Furuya, Y., Nohmi, M., Okamoto, H. & Kuba, K. (1994) Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron 12, 1073-1079.
  • Iino, S., Cui, Y., Galione, A. & Terrar, D.A. (1997) Actions of cADP-ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes. Influence of temperature. Circ. Res. 81, 879-884.
  • Ikemoto, T., Iino, M. & Endo, M. (1995) Enhancing effect of calmodulin on Ca2+-induced Ca2+ release in the sarcoplasmic reticulum of rabbit skeletal muscle fibres. J. Physiol. (London) 487, 573-582.
  • Isenberg, G., Etter, E.F., Wendt-Gallitelli, M.F., Schiefer, A., Carrington, W.A., Tuft, R.A. & Fay, F.S. (1996) Intrasarcomere [Ca2+] gradients in ventricular myocytes revealed by high speed digital imaging microscopy. Proc. Natl. Acad. Sci. U.S.A. 93, 5413-5418.
  • Jeyakumar, L.H., Copello, J.A., O'Malley, A.M., Wu, G.M., Grassucci, R., Wagenknecht, T. & Fleischer, S. (1998) Purification and characterization of ryanodine receptor 3 from mammalian tissue. J. Biol. Chem. 273, 16011- 16020.
  • Jiang, L.H., Gawler, D.J., Hodson, N., Milligan, C.J., Pearson, H.A., Porter, V. & Wray, D. (2000) Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase. J. Biol. Chem. 275, 6135-6143.
  • Jones, S.W. (1998) Overview of voltage-dependent calcium channels. J. Bioenerg. Biomembr. 30, 299-312.
  • Jones, L.R., Zhang, L., Sanborn, K., Jorgensen, A.O. & Kelley, J. (1995) Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J. Biol. Chem. 270, 30787-30796.
  • Jones, L.R., Suzuki, Y.J., Wang, W., Kobayashi, Y.M., Ramesh, V., Franzini-Armstrong, C., Cleemann, L. & Morad, M. (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest. 101, 1385-1393.
  • Jurkat-Rott, K., McCarthy, T. & Lehmann-Horn, F. (2000) Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve 23, 4-17.
  • Kentish, J.C. & Xiang, J.Z. (1997) Ca2+- and caffeine-induced Ca2+ release from the sarcoplasmic reticulum in rat skinned trabeculae: effects of pH and Pi. Cardiovasc. Res. 33, 314-323.
  • Kermode, H., Williams, A.J. & Sitsapesan, R. (1998) The interactions of ATP, ADP, and inorganic phosphate with the sheep cardiac ryanodine receptor. Biophys. J. 74, 1296-1304.
  • Kim, S., Shin, D.W., Kim, D.H. & Eom, S.H. (1999) Crystallization and preliminary X-ray crystallographic studies of the D2 region of the skeletal muscle ryanodine receptor. Acta Crystallogr. D. Biol. Crystallogr. 55, 1601- 1603.
  • Knollmann, B.C., Knollmann-Ritschel, B.E., Weissman, N.J., Jones, L.R. & Morad, M. (2000) Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J. Physiol. (London) 525, 483-498.
  • Knudson, C.M., Stang, K.K., Jorgensen, A.O. & Campbell, K.P. (1993a) Biochemical characterization of ultrastructural localization of a major junctional sarcoplasmic reticulum glycoprotein (triadin). J. Biol. Chem. 268, 12637- 12645.
  • Knudson, C.M., Stang, K.K., Moomaw, C.R., Slaughter, C.A. & Campbell, K. (1993b) Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin). J. Biol. Chem. 268, 12646-12654.
  • Kobayashi, Y.M. & Jones, L.R. (1999) Identification of triadin 1 as the predominant triadin isoform expressed in mammalian myocardium. J. Biol. Chem. 274, 28660-28668.
  • Kourie, J.I. (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 275, C1-C24.
  • Lamb, G.D. (2000) Excitation-contraction coupling in skeletal muscle: Comparisons with cardiac muscle. Clin. Exp. Pharmacol. Physiol. 27, 216-224.
  • Lamb, G.D. & Stephenson, D.G. (1994) Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J. Physiol. (London) 478, 331-339.
  • Langer, G.A. & Peskoff, A. (1997) Role of the diadic cleft in myocardial contractile control. Circulation 96, 3761-3765.
  • Laver, D.R., Eager, K.R., Taoube, L. & Lamb, G.D. (2000) Effects of cytoplasmic and luminal pH on Ca2+ release channels from rabbit skeletal muscle. Biophys. J. 78, 1835-1851.
  • Leong, P. & MacLennan, D.H. (1998a) A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J. Biol. Chem. 273, 7791-7794.
  • Leong, P. & MacLennan, D.H. (1998b) Complex interactions between skeletal muscle ryanodine receptor and dihydropyridine receptor proteins. Biochem. Cell Biol. 76, 681-694.
  • Liu, W., Pasek, D.A. & Meissner, G. (1998) Modulation of Ca2+-gated cardiac muscle Ca2+-release channel (ryanodine receptor) by mono- and divalent ions. Am. J. Physiol. 274, C120- C128.
  • Loke, J. & MacLennan, D.H. (1998) Malignant hyperthermia and central core disease: Disorders of Ca2+ release channels. Am. J. Med. 104, 470-486.
  • Lokuta, A.J., Meyers, M.B., Sander, P.R., Fishman, G.I. & Valdivia, H.H. (1997) Modulation of cardiac ryanodine receptors by sorcin. J. Biol. Chem. 272, 25333-25338.
  • Ma, J., Anderson, K., Shirokov, R., Levis, R., Gonzalez, A., Karhanek, M., Hosey, M.M., Meissner, G. & Rios, E. (1993) Effects of perchlorate on the molecules of excitation-contraction coupling of skeletal and cardiac muscle. J. Gen. Physiol. 102, 423-448.
  • Ma, J. & Zhao, J. (1994) Highly cooperative and hysteretic response of the skeletal muscle ryanodine receptor to changes in proton concentrations. Biophys. J. 67, 626-633.
  • MacKrill, J.J. (1999) Protein-protein interactions in intracellular Ca2+-release channel function. Biochem. J. 337, 345-361.
  • Manunta, M., Rossi, D., Simeoni, I., Butelli, E., Romanin, C., Sorrentino, V. & Schindler, H. (2000) ATP-induced activation of expressed RyR3 at low free calcium. FEBS Lett. 471, 256-260.
  • Marks, A.R. (1996) Cellular functions of immunophilins. Physiol. Rev. 76, 631-649.
  • Martinez-Azorin, F., Gomez-Fernandez, J.C. & Fernandez-Belda, F. (1993) Limited carbodiimide derivatization modifies some functional properties of the sarcoplasmic reticulum Ca2+ release channel. Biochemistry 32, 8553-8559.
  • Marx, S.O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N. & Marks, A.R. (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell 101, 365-376.
  • McDonald, L.J. & Murad, F. (1996) Nitric oxide and cyclic GMP signaling. Proc. Soc. Exp. Biol. Med. 211, 1-6.
  • McDonald, T.F., Pelzer, S., Trautwein, W. & Pelzer, D.J. (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev. 74, 365-507.
  • Meissner, G. (1984) Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. J. Biol. Chem. 259, 2365-2374.
  • Meissner, G. (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J. Biol. Chem. 261, 6300-6306.
  • Meissner, G. (1994) Ryanodine receptor Ca2+ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 56, 485- 508.
  • Meissner, G. & Henderson, J.S. (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J. Biol. Chem. 262, 3065-3073.
  • Meissner, G., Rios, E., Tripathy, A. & Pasek, D.A. (1997) Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J. Biol. Chem. 272, 1628-1638.
  • Menegazzi, P., Larini, F., Treves, S., Guerrini, R., Quadroni, M. & Zorzato, F. (1994) Identification and characterization of three calmodulin binding sites of the skeletal muscle ryanodine receptor. Biochemistry 33, 9078-9084.
  • Messineo, F.C., Rathier, M., Favreau, C., Watras, J. & Takenaka, H. (1984) Mechanisms of fatty acid effects on sarcoplasmic reticulum. III. The effects of palmitic and oleic acids on sarcoplasmic reticulum function a model for fatty acid membrane interactions. J. Biol. Chem. 259, 1336-1343.
  • Meyers, M.B., Pickel, V.M., Sheu, S.S., Sharma, V.K., Scotto, K.W. & Fishman, G.I. (1995) Association of sorcin with the cardiac ryanodine receptor. J. Biol. Chem. 270, 26411-26418.
  • Meyers, M.B., Puri, T.S., Chien, A.J., Gao, T., Hsu, P.H., Hosey, M.M. & Fishman, G.I. (1998) Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels. J. Biol. Chem. 273, 18930-18935.
  • Michalak, M. (1988) Identification of the Ca2+-release activity and ryanodine receptor in sarcoplasmic-reticulum membranes during cardiac myogenesis. Biochem. J. 253, 631-636.
  • Michalak, M., Dupraz, P. & Shoshan-Barmatz, V. (1988) Ryanodine binding to sarcoplasmic reticulum membrane; Comparison between cardiac and skeletal muscle. Biochim. Biophys. Acta 939, 587-594.
  • Mitchell, R.D., Simmerman, H.K. & Jones, L.R. (1988) Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263, 1376- 1381.
  • Mitterdorfer, J., Grabner, M., Kraus, R.L., Hering, S., Prinz, H., Glossmann, H. & Striessnig, J. (1998) Molecular basis of drug interaction with L-type Ca2+ channels. J. Bioenerg. Biomembr. 30, 319-334.
  • Mohabir, R., Lee, H.C., Kurz, R.W. & Clusin, W.T. (1991) Effects of ischemia and hypercarbic acidosis on myocyte calcium transients, contraction, and pHi in perfused rabbit hearts. Circ. Res. 69, 1525-1537.
  • Murayama, T., Kurebayashi, N. & Ogawa, Y. (2000) Role of Mg2+ in Ca2+-induced Ca2+ release through ryanodine receptors of frog skeletal muscle: Modulations by adenine nucleotides and caffeine. Biophys. J. 78, 1810-1824.
  • Murayama, T., Oba, T., Katayama, E., Oyamada, H., Oguchi, K., Kobayashi, M., Otsuka, K. & Ogawa, Y. (1999) Further characterization of the type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm. J. Biol. Chem. 274, 17297-17308.
  • Murayama, T. & Ogawa, Y. (1997) Characterization of type 3 ryanodine receptor (RyR3) of sarcoplasmic reticulum from rabbit skeletal muscles. J. Biol. Chem. 272, 24030-24037.
  • Nakai, J., Imagawa, T., Hakamat, Y., Shigekawa, M., Takeshima, H. & Numa, S. (1990) Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS Lett. 271, 169-777.
  • Needleman, D.H., Aghdasi, B., Seryshev, A.B., Schroepfer, Jr., G.J. & Hamilton, S.L. (1997) Modulation of skeletal muscle Ca2+-release channel activity by sphingosine. Am. J. Physiol. 272, C1465-C1474.
  • Noguchi, N., Takasawa, S., Nata, K., Tohgo, A., Kato, I., Ikehata, F., Yonekura, H. & Okamoto, H. (1997) Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J. Biol. Chem. 272, 3133-3136.
  • Orr, I. & Shoshan-Barmatz, V. (1996) Modulation of the skeletal muscle ryanodine receptor by endogenous phosphorylation of 160/150-kDa proteins of the sarcoplasmic reticulum. Biochim. Biophys. Acta 1283, 80-88.
  • Otsu, K., Willard, H.F., Khanna, V.K., Zorzato, F., Green, N.M. & MacLennan, D.H. (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 13472-13483.
  • Porter Moore, C., Zhang, J.Z. & Hamilton, S.L. (1999) A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding. J. Biol. Chem. 274, 36831-36834.
  • Posterino, G.S. & Fryer, M.W. (1998) Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat. J. Physiol. (London) 512, 97-108.
  • Radermacher, M., Rao, V., Grassucci, R., Frank, J., Timerman, A.P., Fleischer, S. & Wagenknecht, T. (1994) Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. J. Cell Biol. 127, 411-423.
  • Rakovic, S., Cui, Y., Iino, S., Galione, A., Ashamu, G.A., Potter, B.V. & Terrar, D.A. (1999) An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J. Biol. Chem. 274, 17820-17827.
  • Remppis, A., Greten, T., Schafer, B.W., Hunziker, P., Erne, P., Katus, H.A. & Heizmann, C.W. (1996) Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy. Biochim. Biophys. Acta 1313, 253-257.
  • Rich, T.L., Langer, G.A. & Klassen, M.G. (1988) Two components of coupling calcium in single ventricular cell of rabbits and rats. Am. J. Physiol. 254, H937-H946.
  • Ringer, S. (1883) A further contribution regarding the influence of the different constituents of the blood on the contractions of the heart. J. Physiol. (London) 4, 29-42.
  • Rousseau, E. & Pinkos, J. (1990) pH modulates conducting and gating behaviour of single calcium release channels. Pflugers Arch. 415, 645-647.
  • Schafer, B.W. & Heizmann, C.W. (1996) The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends Biochem. Sci. 21, 134-140.
  • Schneider, M.F. & Chandler, W.K. (1973) Voltage dependent charge movement of skeletal muscle: A possible step in excitation-contraction coupling. Nature 242, 244-246.
  • Schulz, R., Rose, J. & Heusch, G. (1994) Involvement of activation of ATP-dependent potassium channels in ischemic preconditioning in swine. Am. J. Physiol. 267, H1341-H1352.
  • Serysheva, II, Orlova, E.V., Chiu, W., Sherman, M.B., Hamilton, S.L. & van Heel, M. (1995) Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nat. Struct. Biol. 2, 18-24.
  • Shacklock, P.S., Wier, W.G.C. & Balke, W. (1995) Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J. Physiol. (London) 487, 601-608.
  • Sharma, C., Smith, T., Li, S., Schroepfer, Jr., G.J. & Needleman, D.H. (2000a) Inhibition of Ca2+ release channel (ryanodine receptor) activity by sphingolipid bases: Mechanism of action. Chem. Phys. Lipids 104, 1-11.
  • Sharma, M.R., Jeyakumar, L.H., Fleischer, S. & Wagenknecht, T. (2000b) Three-dimensional structure of ryanodine receptor isoform three in two conformational states as visualized by cryo-electron microscopy. J. Biol. Chem. 275, 9485-9491.
  • Sharma, M.R., Penczek, P., Grassucci, R., Xin, H.B., Fleischer, S. & Wagenknecht, T. (1998) Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J. Biol. Chem. 273, 18429-18434.
  • Shoshan-Barmatz, V. & Ashley, R.H. (1998) The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int. Rev. Cytol. 183, 185-270.
  • Shoshan-Barmatz, V., Hadad, N., Feng, W., Shafir, I., Orr, I., Varsanyi, M. & Heilmeyer, L.M. (1996a) VDAC/porin is present in sarcoplasmic reticulum from skeletal muscle. FEBS Lett. 386, 205-210.
  • Shoshan-Barmatz, V., Orr, I., Weil, S., Meyer, H., Varsanyi, M. & Heilmeyer, L.M. (1996b) The identification of the phosphorylated 150/ 160-kDa proteins of sarcoplasmic reticulum, their kinase and their association with the ryanodine receptor. Biochim. Biophys. Acta 1283, 89-100.
  • Sonnleitner, A., Conti, A., Bertocchini, F., Schindler, H. & Sorrentino, V. (1998) Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 17, 2790-2798.
  • Sorrentino, V. & Volpe, P. (1993) Ryanodine receptors: How many, where and why? Trends Pharmacol. Sci. 14, 98-103.
  • Stern, M.D. & Lakatta, E.G. (1992) Excitation-contraction coupling in the heart: The state of the question. FASEB J. 6, 3092-3100.
  • Strauss, O., Mergler, S. & Wiederholt, M. (1997) Regulation of L-type calcium channels by protein tyrosine kinase and protein kinase C in cultured rat and human retinal pigment epithelial cells. FASEB J. 11, 859-867.
  • Sukhareva, M., Morrissette, J. & Coronado, R. (1994) Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle. Biophys. J. 67, 751-765.
  • Suko, J., Drobny, H. & Hellmann, G. (1999) Activation and inhibition of purified skeletal muscle calcium release channel by NO donors in single channel current recordings. Biochim. Biophys. Acta 1451, 271-287.
  • Suko, J., Hellmann, G. & Drobny, H. (2000) Modulation of the calmodulin-induced inhibition of sarcoplasmic reticulum calcium release channel (Ryanodine receptor) by sulfhydryl oxidation in single channel current recordings and [3H]Ryanodine binding. J. Membr. Biol. 174, 105-120.
  • Sun, X.H., Protasi, F., Takahashi, M., Takeshima, H., Ferguson, D.G. & Franzini-Armstrong, C. (1995) Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J. Cell Biol. 129, 659-671.
  • Sutko, J.L. & Airey, J.A. (1996) Ryanodine receptor Ca2+ release channels: Does diversity in form equal diversity in function? Physiol. Rev. 76, 1027-1071.
  • Sutko, J.L., Airey, J.A., Welch, W. & Ruest, L. (1997) The pharmacology of ryanodine and related compounds. Pharmacol. Rev. 49, 53-98.
  • Szegedi, C., Sarkozi, S., Herzog, A., Jona, I. & Varsanyi, M. (1999) Calsequestrin: More than only a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Biochem. J. 337, 19- 22.
  • Takekura, H., Nishi, M., Noda, T., Takeshima, H. & Franzini-Armstrong, C. (1995a) Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Proc. Natl. Acad. Sci. U.S.A. 92, 3381-3385.
  • Takekura, H., Takeshima, H., Nishimura, S., Takahashi, M., Tanabe, T., Flockerzi, V., Hofmann, F. & Franzini-Armstrong, C. (1995b) Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling. J. Muscle Res. Cell Motil. 16, 465-480.
  • Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T. & Numa, S. (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439-445.
  • Timerman, A.P., Ogunbumni, E., Freund, E., Wiederrecht, G., Marks, A.R. & Fleischer, S. (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 268, 22992-22999.
  • Timerman, A.P., Onoue, H., Xin, H.B., Barg, S., Copello, J., Wiederrecht, G. & Fleischer, S. (1996) Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J. Biol. Chem. 271, 20385-20391.
  • Tinker, A. & Williams, A.J. (1992) Divalent cation conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum. J. Gen. Physiol. 100, 479-493.
  • Treves, S., Scutari, E., Robert, M., Groh, S., Ottolia, M., Prestipino, G., Ronjat, M. & Zorzato, F. (1997) Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry 36, 11496- 11503.
  • Tripathy, A., Xu, L., Mann, G. & Meissner, G. (1995) Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys. J. 69, 106-119.
  • Tunwell, R.E., Wickenden, C., Bertrand, B.M., Shevchenko, V.I., Walsh, M.B., Allen, P.D. & Lai, F.A. (1996) The human cardiac muscle ryanodine receptor-calcium release channel: Identification, primary structure and topological analysis. Biochem. J. 318, 477-487.
  • Uehara, A., Yasukochi, M. & Imanaga, I. (1996) Modulation of ryanodine binding to the cardiac Ca2+ release channel by arachidonic acid. J. Mol. Cell. Cardiol. 28, 43-51.
  • Wagenknecht, T., Grassucci, R., Frank, J., Saito, A., Inui, M. & Fleischer, S. (1989) Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338, 167-170.
  • Wagenknecht, T., Radermacher, M., Grassucci, R., Berkowitz, J., Xin, H.B. & Fleischer, S. (1997) Locations of calmodulin and FK506-binding protein on the three- dimensional architecture of the skeletal muscle ryanodine receptor. J. Biol. Chem. 272, 32463-32471.
  • Wang, W., Cleemann, L., Jones, L.R. & Morad, M. (2000) Modulation of focal and global Ca2+ release in calsequestrin- overexpressing mouse cardiomyocytes. J. Physiol. (London) 524, 399-414.
  • Wrzosek, A. (1999) Main systems involved in calcium regulation in cardiac muscle cells and their functional relationship. Pol. J. Pharmacol. 51, 187-200.
  • Xia, R.H., Cheng, X.Y., Wang, H., Chen, K.Y., Wei, Q.Q., Zhang, X.H. & Zhu, P.H. (2000) Biphasic modulation of ryanodine binding to sarcoplasmic reticulum vesicles of skeletal muscle by Zn2+ ions. Biochem. J. 345, 279-286.
  • Xiang, J.Z. & Kentish, J.C. (1995) Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles. Cardiovasc. Res. 29, 391- 400.
  • Xin, H.B., Rogers, K., Qi, Y., Kanematsu, T. & Fleischer, S. (1999) Three amino acid residues determine selective binding of FK506-binding protein 12.6 to the cardiac ryanodine receptor. J. Biol. Chem. 274, 15315-15319.
  • Xu, L., Eu, J.P., Meissner, G. & Stamler, J.S. (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S- nitrosylation. Science 279, 234-237.
  • Xu, L., Mann, G. & Meissner, G. (1996) Regulation of cardiac Ca2+ release channel (ryanodine receptor) by Ca2+, H+, Mg2+, and adenine nucleotides under normal and simulated ischemic conditions. Circ. Res. 79, 1100-1109.
  • Yamazawa, T., Takeshima, H., Shimuta, M. & Iino, M. (1997) A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. J. Biol. Chem. 272, 8161- 8164.
  • Zable, A.C., Favero, T.G. & Abramson, J.J. (1997) Glutathione modulates ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Evidence for redox regulation of the Ca2+ release mechanism. J. Biol. Chem. 272, 7069- 7077.
  • Zamparelli, C., Ilari, A., Verzili, D., Giangiacomo, L., Colotti, G., Pascarella, S. & Chiancone, E. (2000) Structure-function relationships in sorcin, a member of the penta EF- hand family. Interaction of sorcin fragments with the ryanodine receptor and an Escherichia coli model system. Biochemistry 39, 658-666.
  • Zarka, A. & Shoshan-Barmatz, V. (1993) Characterization and photoaffinity labeling of the ATP binding site of the ryanodine receptor from skeletal muscle. Eur. J. Biochem. 213, 147-154.
  • Zhang, J.Z., Wu, Y., Williams, B.Y., Rodney, G., Mandel, F., Strasburg, G.M. & Hamilton, S.L. (1999) Oxidation of the skeletal muscle Ca2+ release channel alters calmodulin binding. Am. J. Physiol. 276, C46-C53.
  • Zhu, X., Gurrola, G., Jiang, M.T., Walker, J.W. & Valdivia, H.H. (1999) Conversion of an inactive cardiac dihydropyridine receptor II-III loop segment into forms that activate skeletal ryanodine receptors. FEBS Lett. 450, 221- 226.
  • Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Green, N.M., Lai, F.A., Meissner, G. & MacLennan, D.H. (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 2244-2256.
  • Zot, A.S. & Potter, J.D. (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu. Rev. Biophys. Biophys. Chem. 16, 535-559.
  • Zucchi, R. & Ronca-Testoni, S. (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: Modulation by endogenous effectors, drugs and disease states. Pharmacol. Rev. 49, 1-51.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv47i3p705kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.