PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 3 | 675-683
Article title

Effect of divalent metal ions on annexin-mediated aggregation of asolectin liposomes.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Annexins belong to a family of Ca2+- and phospholipid-binding proteins that can mediate the aggregation of granules and vesicles in the presence of Ca2+. We have studied the effects of different divalent metal ions on annexin-mediated aggregation of liposomes using annexins isolated from rabbit liver and large unilamellar vesicles prepared from soybean asolectin II-S. In the course of these studies, we have found that annexin-mediated aggregation of liposomes can be driven by various earth and transition metal ions other than Ca2+. The ability of metal ions to induce annexin-mediated aggregation decreases in the order: Cd2+>Ba2+, Sr2+>Ca2+>>Mn2+>Ni2+>>Co2+. Annexin-mediated aggregation of vesicles is more selective to metal ions than the binding of annexins to membranes. We speculate that not every type of divalent metal ion can induce conformational change sufficient to promote the interaction of annexins either with two opposing membranes or with opposing protein molecules. Relative concentration ratios of metal ions in the intimate environment may be crucial for the functioning of annexins within specialized tissues and after treatment with toxic metal ions.
Publisher

Year
Volume
47
Issue
3
Pages
675-683
Physical description
Dates
published
2000
received
2000-07-26
accepted
2000-08-1
Contributors
  • Department of Molecular Biology, School of Biology, M.V. Lomonosov Moscow State University, Moscow 119899, Russia
  • Department of Molecular Biology, School of Biology, M.V. Lomonosov Moscow State University, Moscow 119899, Russia
  • Department of Molecular Biology, School of Biology, M.V. Lomonosov Moscow State University, Moscow 119899, Russia
References
  • 1. Geisow, M.J., Walker, J.H., Boustead, C. & Taylor, W. (1987) Annexins new family of Ca2+-regulated phospholipid binding proteins. Biosci. Rep. 7, 289-298.
  • 2. Mel'gunov, V.I. (1990) Advances in Science and Technology: Biophysics; vol. 34, pp. 1-196, VINITI, Moscow (in Russian).
  • 3. Mel'gunov, V.I. (1991) Annexins a new family of Ca2+ binding proteins. Biochemistry (Moscow) 56, 107-122.
  • 4. Raynal, P. & Pollard, H.B. (1994) Annexins: The problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim. Biophys. Acta 1197, 63-93.
  • 5. Pollard, H.B. & Rojas, E. (1988) Ca2+-activated synexin forms highly selective, voltage-gated Ca2+ channels in phosphatidylserine bilayer membranes. Proc. Natl. Acad. Sci. U.S.A. 85, 2974-2978.
  • 6. Sauer, G.R., Adkisson, H.D., Genge, B.R. & Wuthier, R.E. (1989) Regulating effect of endogenous zinc and inhibitory action of toxic metal ions on calcium accumulation by matrix vesicles in vitro. Bone Miner. 7, 233-244.
  • 7. Genge, R., Wu, L.N.Y. & Wuthier, R.E. (1989) Identification of phospholipid-dependent calcium-binding proteins as constituents of matrix vesicles. J. Biol. Chem. 264, 10917- 10921.
  • 8. Andree, H.A., Reutelingsperger, C.P., Hauptmann, R., Hemker, H.C., Hermens, W.T. & Willems, G.M. (1990) Binding of vascular anticoagulant α (VAC α) to planar phospholipid bilayers. J. Biol. Chem. 265, 4923-4928.
  • 9. Rojas, E., Pollard, H.B., Haigler, H.T., Parra, C. & Burns, A.L. (1990) Calcium-activated endonexin II forms calcium channels across acidic phospholipid bilayer membranes. J. Biol. Chem. 265, 21207-21215.
  • 10. Zaks, W.J. & Creutz, C.E. (1990) Annexin chromaffin granule membrane interactions: A comparative study of synexin, p32 and p67. Biochim. Biophys. Acta 1029, 149-160.
  • 11. Mel'gunov, V.I. & Nabokina, S.M. (1994) Interaction of rabbit liver annexins with various divalent metal ions: Competition of proteins with each other and change in the order of annexin binding with phospholipid vesicles. Biochemistry (Moscow) 59, 568-574.
  • 12. Krasavchenko, K.S., Akimova, E.I. & Mel'gunov, V.I. (1999) Formation of tightly bound forms of annexins V and VI in rabbit skeletal muscle membranes isolated in the presence of barium ions. Biochemistry (Moscow) 64, 1169-1175.
  • 13. Geisow, M.J., Fritsche, U., Hexham, J.M., Dash, B. & Johnson, T. (1986) A consensus amino acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane binding protein. Nature 320, 636-638.
  • 14. Creutz, C.E. (1992) The annexins and exocytosis. Science 258, 924-931.
  • 15. Blackwood, R.A. & Ernst, J.D. (1990) Characterization of Ca2+-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem. J. 266, 195-200.
  • 16. Langen, R., Isas, J.M., Luecke, H., Haigler, H. & Hubbell, W.L. (1998) Membrane-mediated assembly of annexins studied by site-directed spin labeling. J. Biol. Chem. 273, 22453- 22457.
  • 17. Mel'gunov, V.I. & Nabokina, S.M. (1992) Rabbit annexins: Comparison of proteins in cell- free homogenates and membranes of various tissues and fast preliminary identification of individual components after two-dimensional electrophoresis. Biochemistry (Moscow) 57, 1194-1204.
  • 18. Dinjus, U., Klinger, R. & Wetzker, R. (1984) Ca2+/EGTA solutions: Comparison between measured and calculated free calcium ion concentrations in the micromolar range. Biomed. Biochim. Acta 43, 1067-1072.
  • 19. Fabiato, A. & Fabiato, F. (1979) Calculator programs for computering the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris) 75, 463-505.
  • 20. D'yakonov, V.P. (1987) Handbook of Algorithms and Programs in BASIC for Personal Computers. Nauka, pp. 86-93, Moscow (in Russian).
  • 21. Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-255.
  • 22. Mel'gunov, V.I., Mamedova, N.A., Akimova, E.I. & Adzhimolaev, T.A. (1990) Calcium-dependent phospholipid-binding proteins associated with the membranes of rabbit skeletal muscle. FEBS Lett. 26, 79-82.
  • 23. Bazzi, M.D. & Nelsestuen, G.L. (1991) Highly sequential binding of protein kinase C and related proteins to membranes. Biochemistry 30, 7970-7977.
  • 24. Zaks, J. & Creutz, C.E. (1991) Ca2+-dependent annexin self-association on membrane surfaces. Biochemistry 30, 9607-9615.
  • 25. Lewit-Bentley, A., Morera, S., Huber, R. & Bodo, G. (1992) The effect of metal binding on the structure of annexin V and implications for membrane binding. Eur. J. Biochem. 210, 73-77.
  • 26. Ohki, S., Düzgünes, N. & Leonards, K. (1982) Phospholipid vesicle aggregation: Effect of monovalent and divalent ions. Biochemistry 21, 2127-2137.
  • 27. Bandorowicz-Pikula, J. & Pikula, S. (1998) Modulation of annexin VI-driven aggregation of phosphatidylserine liposomes by ATP. Biochimie 80, 613-620.
  • 28. Funakoshi, T., Furushima, K., Mizokami, H. & Kojima, S. (1996) Effects of lanthanide ions on the binding ability of annexin V to phospholipid vesicle. Biochem. Mol. Biol. Int. 38, 965-972.
  • 29. Kirsch, T., Nah, H.D., Demuth, D.R., Harrison, G., Golub, E.E., Adams, S.L. & Pacifici, M. (1997) Annexin V-mediated calcium flux across membranes is dependent on the lipid composition: Implications for cartilage mineralization. Biochemistry 36, 3359-3367.
  • 30. Shannon, R.D. & Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr. (Sect. B) 25, 925-945.
  • 31. Liao, M.J. & Prestegard, J.H. (1980) Ion specificity in fusion of phosphatidic acid-phosphatidylcholine mixed lipid vesicles. Biochim. Biophys. Acta 601, 453-461.
  • 32. Kwan, C.Y. (1986) Cation-induced aggregation of membrane vesicles isolated from vascular smooth muscle. J. Bioenerg. Biomembr. 18, 487-505.
  • 33. Tsao, F.H.C. (1990) Purification and characterization of two rabbit lung Ca2+-dependent phospholipid-binding proteins. Biochim. Biophys. Acta 1045, 29-39.
  • 34. Swairjo, M.A., Concha, N.O., Kaetzel, M.A., Dedman, J.R. & Seaton, B.A. (1995) Ca2+- bridging mechanism and phospholipid head group recognition in the membrane binding protein annexin V. Nature Struct. Biol. 2, 968-974.
  • 35. Liemann, S. & Huber, R. (1997) Three-dimensional structure of annexins. Cell. Mol. Life Sci. 53, 516-521.
  • 36. Nelsestuen, G.L. & Ostrowski, B.G. (1999) Membrane association with multiple calcium ions: Vitamin-K-dependent proteins, annexins and pentraxins. Curr. Opin. Struct. Biol. 9, 433-437.
  • 37. Andree, H.A., Willems, G.M., Hauptmann, R., Maurer-Fogy, I.X., Stuart, M.C., Hermens, W.T., Frederik, P.M. & Reutelingsperger, C.P. (1993) Aggregation of phospholipid vesicles by a chimeric protein with the N-terminus of annexin I and the core of annexin V. Biochemistry 32, 4634-4640.
  • 38. Meers, P., Mealy, T., Pavlotsky, N. & Tauber, A.I. (1992) Annexin-mediated vesicular aggregation: Mechanism and role in human neutrophils. Biochemistry 31, 6372-6382.
  • 39. Liu, L. (1999) Calcium-dependent self-association of annexin II: A possible implication in exocytosis. Cell. Signal. 11, 317-324.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv47i3p675kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.