Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 3 | 661-673

Article title

The effect of hexadecaprenol on molecular organisation and transport properties of model membranes.

Content

Title variants

Languages of publication

EN

Abstracts

EN
The Langmuir monolayer technique and voltammetric analysis were used to investigate the properties of model lipid membranes prepared from dioleoylphosphatidylcholine (DOPC), hexadecaprenol (C80), and their mixtures. Surface pressure- molecular area isotherms, current-voltage characteristics, and membrane conductance-temperature were measured. Molecular area isobars, specific molecular areas, excess free energy of mixing, collapse pressure and collapse area were determined for lipid monolayers. Membrane conductance, activation energy of ion migration across the membrane, and membrane permeability coefficient for chloride ions were determined for lipid bilayers. Hexadecaprenol decreases the activation energy and increases membrane conductance and membrane permeability coefficient. The results of monolayer and bilayer investigations show that some electrical, transport and packing properties of lipid membranes change under the influence of hexadecaprenol. The results indicate that hexadecaprenol modulates the molecular organisation of the membrane and that the specific molecular area of polyprenol molecules depends on the relative concentration of polyprenols in membranes. We suggest that hexadecaprenol modifies lipid membranes by the formation of fluid microdomains. The results also indicate that electrical transmembrane potential can accelerate the formation of pores in lipid bilayers modified by long chain polyprenols.

Year

Volume

47

Issue

3

Pages

661-673

Physical description

Dates

published
2000
received
2000-07-26
accepted
2000-08-03

Contributors

author
  • Biophysics Laboratory, Department of Physics, Technical University, Zielona Góra, Poland
  • Department of Biophysics, Institute of Biotechnology and Environmental Sciences, Monte Cassino 21B, 65-561 Zielona Góra, Poland
  • Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
author
  • Department of Biophysics, Institute of Biotechnology and Environmental Sciences, Monte Cassino 21B, 65-561 Zielona Góra, Poland

References

  • Boscoboinik, D.O., Feliz, M., Disalvo, A. & Belocopitow, E. (1985) The effect of dolichol on the permeability properties of phosphatidylcholine bilayers. Chem. Phys. Lipids 38, 343-352.
  • Bugg, T.D.H. & Brandish, P.E. (1994) From peptidoglycan to glycoproteins: Common features of lipid-linked oligosacharide biosynthesis. FEMS Microbiol. Lett. 119, 255-62.
  • Chojnacki, T., Jankowski, W., Mankowski, T. & Sasak, W. (1975) Preparative separation of naturally occuring mixtures of polyprenols on hydroxyalkoxypropyl-sephadex. Anal. Biochem. 69, 114-119.
  • Chojnacki, T., Świeżewska, E. & Vogtmann, T. (1987) Polyprenols from plants structural analogues of mammalian dolichols. Chem. Scripta 27, 209.
  • Costin, I.S. & Barnes, G.T. (1975) Two-component monolayers. J. Colloid Interface Sci. 51 106-121.
  • de Ropp, J.S. & Troy, F.A. (1984) Chemical synthesis and 2H NMR investigation of polyisoprenols: Dynamics in model membranes. Biochemistry 23, 2691-2695.
  • de Ropp, J.S. & Troy, F.A. (1985) 2H NMR Investigation of the organisation and dynamics of polyisoprenols in membranes. J. Biol. Chem. 260, 15669-15674.
  • Gaines, G.L. (1966) Insoluble Monolayers at Liquid-Gas Interfaces; pp. 281-301, John Wiley, New York.
  • Gamble, F., Robello, M., Usai, C. & Marchetti, C. (1982) Properties of ionic transport through phospholipid-glycolipid artificial bilayers. Biochim. Biophys. Acta 693, 165-172.
  • Gruner, S.M. (1985) Intristic curvature hypothesis for biomembrane lipid composition: A role for nonbilayer lipids. Proc. Natl. Acad. Sci. U.S.A. 82 3665-3669.
  • Gruszecki, W.I., Sujak, A., Strzałka, Radunz, A. & Schmid, G.H. (1999a) Organisation of xanthophyll-lipid membranes studied by means of specific pigment antisera, spectrophotometry and monomolecular layer technique. Lutein versus zeaxanthin. Z. Naturforsch. 54c, 517-525.
  • Gruszecki, W.I., Grudziński, W., Banaszek-Glos, A., Matula, M., Kernen, P., Krupa, Z. & Sielewiesiuk, J. (1999b) Xantophyll pigments in light-harvesting complex II in monomolecular layers: Localisation, energy transfer and orientation. Biochim. Biophys. Acta 1412, 173-183.
  • Hemming, F.W. (1983) Biosynthesis of dolichol and related compounds; in Biosynthesis of Isoprenoid Compounds (Porter, J.W. & Spurgeon, S.L., eds.) p. 305, John Wiley, New York.
  • Janas, T. & Janas, T. (1995) Interaction of undecaprenyl phosphate with phospholipid bilayers. Chem. Phys. Lipids 77, 89-97.
  • Janas, T., Kuczera, J., Chojnacki, T. & Krajewska- Rychlik, I. (1986) Properties of lecithin-dodecaprenol macrovesicular bilayer membranes. Chem. Phys. Lipids 39, 347-355.
  • Janas, T., Kuczera, J. & Chojnacki, T. (1989) Voltammetric analysis of polyisoprenoid-containing bilayer lipid membranes. Chem. Phys. Lipids 51, 227-238.
  • Janas, T., Chojnacki, T., Świeżewska, E. & Janas, T. (1994) The effect of undecaprenol on bilayer lipid membranes. Acta Biochim. Polon. 41, 351-357.
  • Janas, T., Walińska, K. & Janas, T. (1998) Electroporation of polyprenol-phosphatidylcholine bilayer lipid membranes. Bioelectrochem. Bioenerg. 45, 215-220.
  • Janas, T., Walińska, K., Chojnacki, T., Świeżewska, E. & Janas, T. (2000) Modulation of properties of phospholipid membranes by the long- chain polyprenol (C160). Chem. Phys. Lipids 106, 31-40.
  • Jankowski, W.J., Świeżewska, E., Sasak, W. & Chojnacki, T. (1994) Occurence of polyprenols and dolichols in plants. J. Plant Physiol. 143, 448-452.
  • Knudsen, M.J. & Troy, F.A. (1989) Nuclear magnetic resonance studies of polyisoprenols in model membranes. Chem. Phys. Lipids 51, 205-212.
  • Lai, C.S. & Schutzbach, J.S. (1984) Dolichol induces membrane leakage of liposomes composed of phosphatidylethanolamine and phosphatidylcholine. FEBS Lett. 169, 279- 282.
  • Markowitz, M.A., Puranik, D.B. & Singh, A. (1995) Monolayer study of diacetylenic phosphatidylcholine and phospholipids containing metal-chelating iminodiacetic acid headgroup. Chem. Phys. Lipids 76, 63-71.
  • Mouritsen, O.G. & Bloom, M. (1984) Mattress model of lipid-protein interactions in membranes. Biophys. J. 46,141-153.
  • McCloskey, M.A. & Troy, F.A. (1980) Paramagnetic isoprenoid carrier lipids. Biochemistry 19, 2056-2060.
  • N'soukpoé-Kossi, C., Sielewiesiuk, J., Leblanc, R.M., Bone, R.A. & Landrum, J.T. (1988) Linear dichroism and orientational studies of carotenoid Langmuir-Blodgett films. Biochim. Biophys. Acta 940, 255-265.
  • Negelmann, L., Pisch, S., Bornscheuer, U. & Schmidt, R. (1997) Properties of unusual phospholipids. III: Synthesis, monolayer investigations and DSC studies of hydroxy octadeca(e)noic acids and diacylglycerophosphocholines derived therefrom. Chem. Phys. Lipids 90, 117-134.
  • Pack, D.W. & Arnold, F.H. (1997) Langmuir monolayer characterization of metal chelating lipids for protein targeting to membranes. Chem. Phys. Lipids 86, 135-152.
  • Rolland, J.P., Santaella, C. & Vierling, P. (1996) Molecular packing of highly fluorinated phosphatidylcholines in monolayers. Chem. Phys. Lipids 79, 71-77.
  • Schroeder, F., Gorka, C., Williamson, L.S. & Wood, W.G. (1987) The influence of dolichols on fluidity of mouse synaptic plasma membranes. Biochim. Biophys. Acta 902, 385-393.
  • Smith, J.R., Laver, D.R. & Coster, H.G.L. (1984) The conductance of lecithin bilayers: The dependence upon temperature. Chem. Phys. Lipids 34, 227-236.
  • Sunamoto, J., Iwamoto, K., Tezuka, T., Kadosaki, K. & Kondo, H. (1983) Liposomal membranes. XIV. Fusion of liposomal membranes induced by polyisoprenoids as monitored by fluorescence quenching method. Chem. Phys. Lipids 33, 127-133.
  • Świeżewska, E., Sasak, W., Mańkowski, T., Jankowski, W., Vogtmann, T., Krajewska, I., Hertel, J., Skoczylas, E. & Chojnacki, T. (1994) The search for plant polyprenols. Acta Biochim. Polon. 41, 221.
  • Tien, H.T. (1974) Bilayer Lipid Membranes (BLM): Theory and Practice. Marcel Dekker, New York.
  • Tomoaia-Cotiel, M., Zsako, J., Chifu, E. & Quinn, P.J. (1987) Intermodular interactions in lipid/ carotenoid monolayers. Biochem. J. 248, 877- 882.
  • Valterson, C., van Duyn, G., Verkleij, A.J., Chojnacki, T., de Kruiff, B. & Dallner, G. (1985) The influence of dolichol, dolichol esters and dolichyl phosphate on phospholipid polymorphism and fluidity in model membranes. J. Biol. Chem. 260, 2742-2751.
  • Vigo, C., Grossman, S.H. & Drost-Hansen, W. (1984) Interactions of dolichol and dolichyl phosphate with phospholipid bilayers. Biochim. Biophys. Acta 774, 221-226.
  • Wanke, M., Chojnacki, T. & Świeżewska, E. (1998) The diversity of polyprenol pattern in leaves of fruit trees belonging to Rosaceae and Cornaceae. Acta Biochim. Polon. 45, 811-818.
  • Wood, W.G., Gorka, C., Williamson, L.S., Strong, R., Sun, G.Y. & Schroeder, F. (1986) Dolichol alters dynamic and static properties of mouse synaptosomal plasma membranes. FEBS Lett. 205, 25-28.
  • Wood, W.G., Sun, G.Y. & Schroeder, F. (1989) Membrane properties of dolichol in different age groups of mice. Chem. Phys. Lipids 51, 219-226.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv47i3p661kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.