Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 3 | 651-660
Article title

Gemini (dimeric) surfactant perturbation of the human erythrocyte.

Title variants
Languages of publication
We studied the ability of di-cationic gemini surfactantsdi (amphiphiles), i.e. 1,4-butanediammonium-N,N-dialkyl-N,N,N',N'-tetramethyl bromides (Di-Cm-di-QAS (s = 4), where m = 8,11,13,16 and s = the number of alkyl groups in the spacer) to induce shape alteration, vesiculation, haemolysis and phosphatidylserine exposure in human erythrocytes, and to protect erythrocytes against hypotonic haemolysis. At high sublytic concentrations the Di-Cm-di-QAS (s = 4) amphiphiles rapidly induced echinocytic (spiculated) shapes and a release of exovesicles, mainly in the form of tubes, from the cell surface. Following 60 min incubation erythrocytes were sphero-echinocytic and a few cells with invaginations/endovesicles were observed. No phosphatidylserine exposure was detected. The haemolytic potency increased with an increase of the alkyl chain length. At sublytic concentrations the Di-Cm-di-QAS (s = 4) amphiphiles protected erythrocytes against hypotonic haemolysis. It is suggested that the Di-Cm-di-QAS (s = 4) amphiphiles perturb the membrane in a similar way as single-chain cationic amphiphiles, but that they do not easily translocate to the inner membrane leaflet.
Physical description
  • Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
  • Department of Biology, Åbo Akademi University, Biocity, Åbo/Turku, Finland
  • Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Biocity, Åbo/Turku, Finland
  • >Laboratory of Applied Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
  • Department of Biology, Åbo Akademi University, Biocity, Åbo/Turku, Finland
  • Alami, E., Beinert, G., Marie, P. & Zana, R. (1993) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) amphiphiles. 3. Behaviour at the air-water interface. Langmuir 9, 1465-1467.
  • Bessis, M. (1973) Red Cell Shape; in Physiology, Pathology, Ultrastructure (Bessis, M., Weed, R.I. & Leblond, P.F., eds.) pp. 1-24, Springer- Verlag, Heidelberg.
  • Bobrowska-Hägerstrand, M., Kralj-Iglič, V., Iglič, A., Bialkowska, K., Isomaa, B. & Hägerstrand, H. (1999) Toroidal membrane endovesicles induced by polyethyleneglycol dodecylether in human erythrocytes. Biophys. J. 77, 3356- 3362.
  • Danino, D., Talmon, Y. & Zana, R. (1995) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) amphiphiles (dimeric amphiphiles). 5. Aggregation and microstructure in aqueous solutions. Langmuir 11, 1448-1456.
  • Danino, D., Talmon, Y. & Zana, R. (1997) Vesicle-to-micelle transformation in systems containing dimeric amphiphiles. J. Colloid Interface Sci. 185, 84-93.
  • Devinsky, F., Lacko, I., Mlynarcik, D., Racansky, V. & Krasnec, L. (1985) Relationship between critical micelle concentration and minimum inhbitory concentrations for some none-aromatic quaternary ammonium salts and amine oxides. Tenside Detergents 22, 10-15.
  • Diamant, H. & Andelman, D. (1994) Dimeric amphiphiles: Spacer chain conformation and specific area at the air/water interface. Langmuir 10, 2910-2916.
  • Dubničková, M., Balgavý, P., Devínsky, F., Lacko, I. & Yaradaikin, S. (1996) Geometrical parameters of the lipid bilayer in the presence of amphiphilic compounds. 15th Annual Biochemistry Meeting of the Czech Society for Biochemistry and Molecular Biology. Chem. Listy 90, 627.
  • Dubničková, M., Pisarčík, M., Lacko, I., Devínsky, F., Mlynarčík, D. & Balgavý, P. (1997) Gemini amphiphiles: Antimicrobial activity, micellization and interaction with phospholipid bilayers. XIIIth School on Biophysics of Membrane Transport. Cell.Mol. Biol. Letters 2 (Suppl. 1), 215-216.
  • Fisicaro, E. (1997) Gemini amphiphiles: Chemico- physical and biological properties. Cell.Mol. Biol. Lett. 2 (Suppl. 1), part II, 43-61.
  • Fogt, A., Hägerstrand, H. & Isomaa, B. (1995) Effects of N,N'-bisdimethyl-1,2-ethanediamine dichloride, a double-chain amphiphile, on membrane-related functions in human erythrocytes. Chem. Biol. Inter. 94, 147-155.
  • Frindi, M., Michelis, B., Levy, H. & Zana, R. (1994) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) amphiphiles. 4. Ultrasonic absorption studies of amphiphile exchange between micelles and bulk phase in aqueous micellar solutions. Langmuir 10, 1140-1145.
  • Hirata, H., Hattori, N., Ishida, M., Okabayashi, H., Frusaka, M. & Zana, R. (1995) Small-angle neutron-scattering study of bis(quaternary ammonium bromide) amphiphile micelles in water. Effect of the spacer chain length on micellar structure. J. Phys. Chem. 99, 17778-17784.
  • Hägerstrand, H. & Isomaa, B. (1989) Vesiculation induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 982, 179-186.
  • Hägerstrand, H. & Isomaa, B. (1991) Amphiphile- induced antihaemolysis is not causally related to shape changes and vesiculation. Chem. Biol. Inter. 79, 335-347.
  • Hägerstrand, H. & Isomaa, B. (1992) Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1109, 117-126.
  • Hägerstrand, H., Holmström, T., Bobrowska- Hägerstrand, M., Eriksson, J. & Isomaa, B. (1998) Amphiphile-induced phosphatidylserine exposure in human erythrocytes. Mol. Membr. Biol. 15, 89-95.
  • Hägerstrand, H., Danieluk, M., Bobrowska- Hägerstrand, M., Kralj-Iglič, V. & Iglič, A. (1999) Liposomes composed of a double-chain cationic amphiphile (Vectamidine) induced their own encapsulation into human erythrocytes. Biochim. Biophys. Acta 1421, 125-130.
  • Imam, T., Devinsky, F., Lacko, I. & Krasnec, L. (1983) Preparation and antimicrobial activity of some new bisquaternary ammonium salts. Pharmazie 38, 308-310.
  • Isomaa, B., Hägerstrand, H. & Paatero, G. (1987) Shape transformations induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 899, 93-103.
  • Isomaa, B., Hägerstrand, H., Paatero, G. & Engblom, A.Ch. (1986) Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes. Biochim. Biophys. Acta 860, 510-524.
  • Israelachvili, J.N. (1992) Intermolecular and Surface Forces, 2nd edn, Academic Press, London.
  • Kleszczynska, H., Sarapuk, J., Przestalski, S. & Kilian, M. (1990) Mechanical properties of red cell and BLM in the presence of some mono- and bis-quaternary ammonium salts. Studia Biophys. 135, 191-199.
  • Kralj-Iglič, V., Heinrich, V., Svetina, S. & Zeks, B. (1999) Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B 10, 5-8.
  • Kralj-Iglič, V., Iglič, A., Hagerstrand, H. & Peterlin, P. (2000) Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys. Rev. E 61, 4230-4234.
  • Kralj-Iglič, V., Svetina, S. & Zeks, B. (1996) Shapes of bilayer vesicles with membrane embedded molecules. Eur. Biophys. J. 24, 311-321.
  • Kuypers, F.A., Roelofsen, B., Berendsen, W., Op den Kamp, J.A. & van Deenen, L.L. (1984) Shape changes in human erythrocytes induced by replacement of the native phosphatidylcholine with species containing various fatty acids. J. Cell Biol. 99, 2260-2267.
  • Rozycka-Roszak, B., Fisicaro, E. & Ghiozzi, A. (1996) Thermodynamic study of aqueous micellar solutions of biologically active bisquaternary ammonium chlorides. J. Coll. Interf. Sci. 184, 209-215.
  • Rozycka-Roszak, B., Witek, S. & Przestalski, S. (1989) A comparison of the micellization of selected amphiphilic N,N-bisdimethyl-1,2-ethanediamine derivatives with some amphiphilic betaine ester derivatives. J. Coll. Interf. Sci. 131, 181-187.
  • Sheetz, P.M. & Singer, S.J. (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocytes interactions. Proc. Natl. Acad. Sci. U.S.A. 71, 4457-4461.
  • Tamura, A., Sato, T. & Fujii, T. (1987) Recovery of human erythrocytes from the echinocyte shape induced by added choline-phospholipids is dependent on the acyl chain length. Cell Biochem. Funct. 5, 167-173.
  • Zana, R., Benrraou, M. & Rueff, R. (1991) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) amphiphiles. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7, 1072-1075.
  • Zana, R., Levy, H. & Kwetkat, K. (1998) Mixed micellation of dimeric (gemini) surfactants and concentional surfactants. J. Coll. Interf. Sci. 197, 370-376.
  • Zana, R. & Talmon, Y. (1993) Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362, 228-230.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.