PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 3 | 639-649
Article title

Liposomal drug delivery, a novel approach: PLARosomes.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Almost from the time of their rediscovery in the 60's and the demonstration of their entrapment potential, liposomal vesicles have drawn attention of researchers as potential carriers of various bioactive molecules that could be used for therapeutic applications in humans and animals. Several commercial liposome-based drugs have already been discovered, registered and introduced with great success on the pharmaceutical market. However, further studies, focusing on the elaboration of more efficient and stable amphiphile-based vesicular (or non-viral) drug carriers are still under investigation. In this review we present the achievements of our group in this field. We have discovered that natural amphiphilic dihydroxyphenols and their semisynthetic derivatives are promising additives to liposomal lipid compositions. The presence of these compounds in lipid composition enhances liposomal drug encapsulation, reduces the amount of the lipid carrier necessary for efficient entrapment of anthracycline drugs by a factor of two, stabilizes liposomal formulation of the drug (both in suspension and in a lyophilized powder), does not influence liposomal fate in the blood circulation system and benefits from other biological activities of their resorcinolic lipid modifiers.
Keywords
Publisher

Year
Volume
47
Issue
3
Pages
639-649
Physical description
Dates
published
2000
received
2000-07-31
accepted
2000-08-10
Contributors
  • Department of Lipids and Liposomes, Institute of Biochemistry and Molecular Biology, University of Wrocław, St. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
  • Department of Lipids and Liposomes, Institute of Biochemistry and Molecular Biology, University of Wrocław, St. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
  • Department of Lipids and Liposomes, Institute of Biochemistry and Molecular Biology, University of Wrocław, St. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
author
  • Department of Lipids and Liposomes, Institute of Biochemistry and Molecular Biology, University of Wrocław, St. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
References
  • 1. Lasic, D.D. (1993) Liposomes: from Physics to Applications. Elsevier, Amsterdam, London, New York.
  • 2. Bangham, A.D., Standish, M.M. & Watkins, J.C. (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J. Mol. Biol. 13, 238-252.
  • 3. Woodle, M.C. & Papahadjopoulos, D. (1989) Liposome preparation and size characterization. Methods Enzymol. 171, 193-217.
  • 4. Choquet, C.G., Patel, G.B., Beveridge, T.J. & Sprott, G.D. (1994) Stability of pressure extruded liposomes made from archaebacterial ether lipids. Appl. Microbiol. Biotechnol. 42, 375-384.
  • 5. Patel, G.B. & Sprott, G.D. (1999) Archaeobacterial ether lipid liposomes (Archaeosomes) as novel vaccine and drug delivery systems. Crit. Rev. Biotechnol. 19, 317-357.
  • 6. Sprott, G.D., Tolson, D.L. & Patel, G.B. (1997) Archaeosomes as novel antigen delivery systems. FEMS Microbiol. Lett. 154, 17-22.
  • 7. Yamauchi, K., Doi, K. & Kinoshita, M. (1996) Archaebacterial lipid models: Stable liposomes from 1-alkyl-2-phytanyl-sn-glycero- 3-phosphocholines. Biochim. Biophys. Acta 1283, 163-169.
  • 8. Clary, L., Verderone, G., Santaella, C. & Vierling, P. (1997) Membrane permeability and stability of liposomes made from highly fluorinated double-chain phosphocholines derived from diaminopropanol, serine or ethanolamine. Biochim. Biophys. Acta 1328, 55-64.
  • 9. Gadras, C., Santaella, C. & Vierling, P. (1999) Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts. J. Control. Rel. 57, 29-34
  • 10. Riess, J.G. (1994) Fluorinated vesicles. J. Drug Target. 2, 455-468.
  • 11. Pector, V., Caspers, J., Banerjee, S., Deriemaeker, L., Fuks, R., ElOuahabi, A., Vandenbranden, M., Finsy, R. & Ruysschaert, J.M. (1998) Physico-chemical characterization of a double long-chain cationic amphiphile (Vectamidine) by microelectrophoresis. Biochim. Biophys. Acta 1372, 339-346.
  • 12. Abel, E., Fedders, M.F. & Gokel, G.W. (1995) Vesicle formation from N-alkylindoles: Implications for tryptophan water interactions. J. Am. Chem. Soc. 117, 1265-1270.
  • 13. Assadullahi, T.P., Hider, R.C. & McAuley, A.J. (1991) Liposome formation from synthetic polyhydroxyl lipids. Biochim. Biophys. Acta 1083, 271-276.
  • 14. Arunothayanun, P., Uchegbu, I.F. & Florence, A.T. (1999) Osmotic behaviour of polyhedral non-ionic surfactant vesicles (niosomes). J. Pharm. Pharmacol. 51, 651-657.
  • 15. Baillie, A.J., Coombs, G.H., Dolan, T.F. & Laurie, J. (1986) Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti- leishmanial drug, sodium stibogluconate. J. Pharm. Pharmacol. 38, 502-505.
  • 16. Budker, V., Gurevich, V., Hagstrom, J.E., Bortzov, F. & Wolff, J.A. (1996) pH-Sensitive, cationic liposomes: A new synthetic virus-like vector. Nature Biotechnol. 14, 760-764.
  • 17. Chen, H.M., Torchilin, V. & Langer, R. (1996) Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res. 13, 1378-1383.
  • 18. Chen, H.M., Torchilin, V. & Langer, R. (1996) Polymerized liposomes as potential oral vaccine carriers: Stability and bioavailability. J. Control. Rel. 42, 263-272.
  • 19. Thompson, D.H., Gerasimov, O.V., Wheeler, J.J., Rui, Y.J. & Anderson, V.C. (1996) Triggerable plasmalogen liposomes: Improvement of system efficiency. Biochim. Biophys. Acta 1279, 25-34.
  • 20. Cistola, D.P., Atkinson, D., Hamilton, J.A. & Small, D.M. (1986) Phase behavior and bilayer properties of fatty acids:hydrated 1:1 acid- soaps. Biochemistry 25, 2804-2812.
  • 21. Hu, C.J. & Rhodes, D.G. (1999) Proniosomes: A novel drug carrier preparation. Int. J. Pharm. 185, 23-35.
  • 22. Murdan, S., Gregoriadis, G. & Florence, A.T. (1999) Sorbitan monostearate polysolbate 20 organogels containing niosomes: A delivery vehicle for antigens? Eur. J. Pharm. Sci. 8, 177-185.
  • 23. Uchegbu, I.F. & Duncan, R. (1997) Niosomes containing N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin (PK1): Effect of method of preparation and choice of surfactant on niosome characteristics and a preliminary study of body distribution. Int. J. Pharm. 155, 7-17.
  • 24. Uchegbu, I. (1998) The biodistribution of novel 200-nm palmitoyl muramic acid vesicles. Int. J. Pharm. 162, 19-27.
  • 25. Uchegbu, I.F., Schatzlein, A.G., Tetley, L., Gray, A.I., Sludden, J., Siddigne, S. & Mosha, E. (1998) Polymeric chitosan-based vesicles for drug delivery. J. Pharm. Pharmacol. 50, 453-458.
  • 26. Vora, B., Khopade, A.J. & Jain, N.K. (1998) Proniosome based transdermal delivery of levonorgestrel for effective contraception. J. Control. Rel. 54, 149-165.
  • 27. Weissig, V., Lasch, J., Erdos, G., Meyer, H.W., Rowe, T.C. & Hughes, J. (1998) DQAsomes: A novel potential drug and gene delivery system made from Dequalinium(TM). Pharm. Res. 15, 334-337.
  • 28. Gregoriadis, G. & Ryman, B.E. (1972) Lysosomal localization of fructofuranoside-containing liposomes injected into rats. Biochem. J. 129, 123-133.
  • 29. Allen, T.M. (1997) Liposomes: Opportunities in drug delivery. Drugs 54, 8-14.
  • 30. Allen, T.M. & Moase, E.H. (1996) Therapeutic opportunities for targeted liposomal drug delivery. Adv. Drug Deliv. Rev. 21, 117-133.
  • 31. Bally, M.B., Nayar, R., Masin, D., Hope, M.J., Cullis, P.R. & Mayer, L.D. (1990) Liposomes with entrapped doxorubicin exhibit extended blood residence times. Biochim. Biophys. Acta 1023, 133-139.
  • 32. Bandak, S., Ramu, A., Barenholz, Y. & Gabizon, A. (1999) Reduced UV-induced degradation of doxorubicin encapsulated in polyethyleneglycol-coated liposomes. Pharm. Res. 16, 841-846.
  • 33. Coukell, A.J. & Spencer, C.M. (1997) Polyethylene glycol-liposomal doxorubicin: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the management of AIDS-related Kaposi's sarcoma. Drugs 53, 520-538.
  • 34. Gabizon, A., Goren, D., Cohen, R. & Barenholz, Y. (1998) Development of liposomal anthracyclines: From basics to clinical applications. J. Control. Rel. 53, 275-279.
  • 35. Kulkarni, S.B., Betageri, G.V. & Singh, M. (1995) Factors affecting microencapsulation of drugs in liposomes. J. Microencapsul. 12, 229-246.
  • 36. Nagayasu, A., Uchiyama, K. & Kiwada, H. (1999) The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 40, 75-87.
  • 37. Bajoria, R. & Contractor, S.F. (1997) Effect of surface charge of small unilamellar liposomes on uptake and transfer of carboxyfluorescein across the perfused human term placenta. Pediatr. Res. 42, 520-527.
  • 38. Miller, C.R., Bondurant, B., McLean, S.D., McGovern, K.A. & OBrien, D.F. (1998) Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37, 12875- 12883.
  • 39. Nakanishi, T., Kunisawa, J., Hayashi, A., Tsutsumi, Y., Kubo, K., Nakagawa, S., Fujiwara, H., Hamaoka, T. & Mayumi, T. (1997) Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins. Biochem. Biophys. Res. Commun. 240, 793-797.
  • 40. Scherphof, G.L. & Kamps, J.A.A.M. (1998) Receptor versus non-receptor mediated clearance of liposomes. Adv. Drug Deliv. Rev. 32, 81-97.
  • 41. Papisov, M.I. (1998) Theoretical considerations of RES-avoiding liposomes: Molecular mechanics and chemistry of liposome interactions. Adv. Drug Deliv. Rev. 32, 119-138.
  • 42. Bakker, J., Sanders, A. & Van Rooijen, N. (1998) Effects of liposome-encapsulated drugs on macrophages: Comparative activity of the diamidine 4',6-diamidino-2-phenylindole and the phenanthridinium salts ethidium bromide and propidium iodide. Biochim. Biophys. Acta 1373, 93-100.
  • 43. Mayer, L.D. (1998) Future developments in the selectivity of anticancer agents: Drug delivery and molecular target strategies. Cancer Metastasis Rev. 17, 211-218.
  • 44. Sharma, A. & Sharma, U.S. (1997) Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 154, 123-140.
  • 45. Engberts, J.B.F.N. & Hoekstra, D. (1995) Vesicle-forming synthetic amphiphiles. Biochim. Biophys. Acta 1241, 323-340.
  • 46. Gluck, R. & Wegmann, A. (1997) Virosomes, a new liposome-like vaccine delivery system; in Antigen Delivery Systems (Gander, B., Merkle, H.P. & Corradin, G., eds.) pp. 101-122, Harwood Academic Publ.
  • 47. Han, S.K., Ko, Y.I., Park, S.J., Jin, I.J. & Kim, Y.M. (1997) Oleanolic acid and ursolic acid stabilize liposomal membranes. Lipids 32, 769-773.
  • 48. Shimizu, K., Maitani, Y., Takayama, K. & Nagai, T. (1997) Formulation of liposomes with a soybean-derived sterylglucoside mixture and cholesterol for liver targeting. Biol. Pharm. Bull. 20, 881-886.
  • 49. Waters, R.E., White, L.L. & May, J.M. (1997) Liposomes containing alpha-tocopherol and ascorbate are protected from an external oxidant stress. Free Radic. Res. 26, 373-379.
  • 50. Zeisig, R., Arndt, D., Stahn, R. & Fichtner, I. (1998) Physical properties and pharmacological activity in vitro and in vivo of optimised liposomes prepared from a new cancerostatic alkylphospholipid. Biochim. Biophys. Acta 1414, 238-248.
  • 51. Kozubek, A. & Tyman, J.H.P. (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99, 1- 26.
  • 52. Gubernator, J., Stasiuk, M. & Kozubek, A. (1999) Dual effect of alkylresorcinols, natural amphiphilic compounds, upon liposomal permeability. Biochim. Biophys. Acta 1418, 253- 260.
  • 53. Kozubek, A., Nietubyc, M. & Sikorski, A.F. (1992) Modulation of the activities of membrane enzymes by cereal grain resorcinolic lipids. Z. Naturforsch. 47c, 41-46.
  • 54. Gubernator, J. (1998) Modification of the captured volume and the stability of liposomes as drug carriers by resorcinolic lipids and their derivatives. PhD Thesis, Department of Lipids and Liposomes, University of Wroclaw, Wroclaw.
  • 55. Gubernator, J. & Kozubek, A. (1998) Liposomes modified with alkylresorcinols. Chem. Phys. Lipids 94, 177.
  • 56. Przeworska, E. (2000) The properties of liposomes containing resorcinolic lipids. PhD Thesis, Department of Lipids and Liposomes, University of Wroclaw, Wroclaw.
  • 57. Kozubek, A. (1992) The effect of resorcinolic lipids on phospholipid hydrolysis by phospholipase A2. Z. Naturforsch. 47c, 608-612.
  • 58. Kozubek, A. & Nienartowicz, B. (1995) Cereal grain resorcinolic lipids inhibit H2O2-induced peroxidation of biological membranes. Acta Biochim. Polon. 42, 309-316.
  • 59. Nienartowicz, B. & Kozubek, A. (1993) Antioxidant activity of cereal bran resorcinolic lipids. Pol. J. Food Nutr. Sci. 2, 51-60.
  • 60. Struski, D.G.J. & Kozubek, A. (1992) Cereal grain alk(en)ylresorcinols protect lipids against ferrous ions-induced peroxidation. Z. Naturforsch. 47c, 47-50.
  • 61. Woodall, A.A., Britton, G. & Jackson, M.J. (1997) Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: Relationship between carotenoid structure and protective ability. Biochim. Biophys. Acta 1336, 575-586.
  • 62. George, J. & Kuttan, R. (1997) Mutagenic, carcinogenic and cocarcinogenic activity of cashewnut shell liquid. Cancer Lett. 112, 11-16.
  • 63. Gasiorowski, K., Szyba, K., Brokos, B. & Kozubek, A. (1996) Antimutagenic activity of alkylresorcinols from cereal grains. Cancer Lett. 106, 109-115.
  • 64. Gasiorowski, K., Brokos, B., Kozubek, A. & Oszmianski, J. (2000) The antimutagenic activity of two plant-derived compounds. A comparative cytogenetic studies. Cell Mol. Biol. Lett. 5, 171-190.
  • 65. Rejman, J. & Kozubek, A. (1997) Long-chain orcinol homologs from cereal bran are effective inhibitors of glycerophosphate dehydrogenase. Cell Mol. Biol. Lett. 2, 411-419.
  • 66. Deszcz, L. & Kozubek, A. (1997) Inhibition of soybean lipoxygenases by resorcinolic lipids from cereal bran. Cell. Mol. Biol. Lett. 2, 213 - 222.
  • 67. Barr, J.R., Murty, V.S., Yamaguchi, K., Singh, S., Smith, D.H. & Hecht, S.M. (1988) 5-Alkylresorcinols from Hakea amplexicaulis that cleave DNA. Chem. Res. Toxicol. 1, 204-207.
  • 68. Hecht, S.M. (1989) Natural products that cleave DNA. Pure Appl. Chem. 61, 577-580.
  • 69. Lytollis, W., Scannell, R.T., An, H.Y., Murty, V.S., Reddy, K.S., Barr, J.R. & Hecht, S.M. (1995) 5-Alkylresorcinols from Hakea trifurcata that cleave DNA. J. Am. Chem. Soc. 117, 12683-12690.
  • 70. Nagai, K., Carter, B.J., Xu, J. & Hecht, S.M. (1991) DNA clevage by oxygen radicals produced in the absence of metal ions or light. J. Am. Chem. Soc. 113, 5099-5100.
  • 71. Scannell, R.T., Barr, J.R., Murty, V.S., Reddy, K.S. & Hecht, S.M. (1988) DNA strand scission by naturally occurring 5-alkylresorcinols. J. Am. Chem. Soc. 110, 3650-3651.
  • 72. Deng, J.Z., Starck, S.R. & Hecht, S.M. (1999) Bis-5-alkylresorcinols from Panopsis rubescens that inhibit DNA polymerase beta. J. Nat. Prod. 62, 477-481.
  • 73. Starck, S.R., Deng, J.Z. & Hecht, S.M. (2000) Naturally occurring alkylresorcinols that mediate DNA damage and inhibit its repair. Biochemistry 39, 2413.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv47i3p639kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.