Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 3 | 579-589
Article title

Smooth muscle actomyosin promotes Ca2+-dependent interactions between annexin VI and detergent-insoluble glycosphingolipid-enriched membrane domains.

Title variants
Languages of publication
The mechanical link coupling cytoskeletal and contractile proteins to the sarcolemma of smooth muscle cells is essential for transmitting tension from the cell's interior to exterior. In addition to the well-characterized actin-integrin associations present in adhaerens junctions, our recent work has postulated the existence of a reversible annexin-dependent membrane-cytoskeleton complex, forged in response to a rise in intracellular Ca2+ concentration following smooth muscle cell stimulation (Babiychuk et al., J. Biol Chem. 1999, 274, 35191-35195). Detailed biochemical characterization of the interactions responsible for the formation of this complex revealed that annexins II and VI interact with actomyosin, or detergent-insoluble glycosphingolipid-enriched membrane domains (rafts) purified from smooth muscle, in a concentration- and Ca2+-dependent manner. Annexin II interacted with lipid rafts with high Ca2+-sensitivity, while for annexin VI this interaction required non-physiologically high concentrations of free Ca2+. However, the Ca2+-sensitivity of the latter interaction strongly increased in the presence of purified smooth muscle actomyosin. The detailed biochemical analysis of the interactions occurring between annexin II, annexin VI, actomyosin and rafts suggests that annexins regulate sarcolemmal organization during smooth muscle cell contraction.
Physical description
  • Babiychuk, E.B., Palstra, R.J., Schaller, J., Kampfer, U. & Draeger, A. (1999) Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J. Biol. Chem. 274, 35191- 35195.
  • Barwise, J.L. & Walker, J.H. (1996) Subcellular localization of annexin V in human foreskin fibroblasts: Nuclear localization depends on growth state. FEBS Lett. 394, 213-216.
  • Blanchard, S., Barwise, J.L., Gerke, V., Goodall, A., Vaughan, P.F. & Walker, J.H. (1996) Annexins in the human neuroblastoma SH-SY5Y: Demonstration of relocation of annexins II and V to membranes in response to elevation of intracellular calcium by membrane depolarisation and by the calcium ionophore A23187. J. Neurochem. 67, 805-813.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248- 254.
  • Chang, W.J., Ying, Y.S., Rothberg, K.G., Hooper, N.M., Turner, A.J., Gambliel, H.A., De Gunzburg, J., Mumby, S.M., Gilman, A.G. & Anderson, R.G. (1994) Purification and characterization of smooth muscle cell caveolae. J. Cell Biol. 126, 127-138.
  • Chasserot-Golaz, S., Vitale, N., Sagot, I., Delouche, B., Dirrig, S., Pradel, L.A., Henry, J.P., Aunis, D. & Bader, M.F. (1996) Annexin II in exocytosis: Catecholamine secretion requires the translocation of p36 to the subplasmalemmal region in chromaffin cells. J. Cell Biol. 133, 1217-1236.
  • Diakonova, M., Gerke, V., Ernst, J., Liautard, J.P., van der Vusse, G. & Griffiths, G. (1997) Localization of five annexins in J774 macrophages and on isolated phagosomes. J. Cell Sci. 110, 1199-1213.
  • Fujimoto, T., Nakade, S., Miyawaki, A., Mikoshiba, K. & Ogawa, K. (1992) Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J. Cell Biol. 119, 1507-1513.
  • Gerke, V. & Moss, S.E. (1997) Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129-154.
  • Gerke, V. & Weber, K. (1984) Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; Calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J. 3, 227-233.
  • Glenney, J. (1986) Two related but distinct forms of the Mr 36000 tyrosine kinase substrate (calpactin) that interact with phospholipid and actin in a Ca2+-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 83, 4258-4262.
  • Glenney, J.R.J., Tack, B. & Powell, M.A. (1987) Calpactins: Two distinct Ca++-regulated phospholipid- and actin-binding proteins isolated from lung and placenta. J. Cell Biol. 104, 503-511.
  • Harder, T., Kellner, R., Parton, R.G. & Gruenberg, J. (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell. 8, 533-545.
  • Harlow, E. & Lane, D. (1988) Antibodies. A Laboratory Manual; pp. 104-105, Cold Spring Harbour Laboratory.
  • Hawkins, T.E., Roes, J., Reeds, D., Monkhouse, J. & Moss, S.E. (1999) Immunological development and cardiovascular function are normal in annexin VI null mutant mice. Mol. Cell. Biol. 19, 8028-8032.
  • Hosoya, H., Kobayashi, R., Tsukita, S. & Matsumura, F. (1992) Ca(2+)-regulated actin and phospholipid binding protein (68 kD-protein) from bovine liver: Identification as a homologue for annexin VI and intracellular localization. Cell Motil. Cytoskeleton 22, 200-210.
  • Ikebuchi, N.W. & Waisman, D.M. (1990) Calcium-dependent regulation of actin filament bundling by lipocortin-85 J. Biol. Chem. 265, 3392-3400.
  • Izumi, T., Shibata, Y. & Yamamoto, T. (1988) Striped structures on the cytoplasmic surface membranes of the endothelial vesicles of the rat aorta revealed by quick-freeze, deep-etching replicas. Anat. Rec. 220, 225-232.
  • Kang, S.A., Cho, Y.J., Moon, H.B. & Na, D.S. (1996) Translocation of lipocortin (annexin) 1 to the membrane of U937 cells induced by phorbol ester, but not by dexamethasone. Br. J. Pharmacol. 117, 1780-1784.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the heads of bacteriophage T4. Nature 227, 680-685.
  • Lisanti, M.P., Scherer, P.E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Y.H., Cook, R.F. & Sargiacomo, M. (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: Implications for human disease. J. Cell Biol. 126, 111-126.
  • Macala, L.J., Yu, R.K. & Ando, S. (1983) Analysis of brain lipids by high performance thin-layer chromatography and densitometry. J. Lipid Res. 24, 1243-1250.
  • Raynal, P. & Pollard, H.B. (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim. Biophys. Acta 1197, 63-93.
  • Sagot, I., Regnouf, F., Henry, J.P. & Pradel, L.A. (1997) Translocation of cytosolic annexin 2 to a Triton-insoluble membrane subdomain upon nicotine stimulation of chromaffin cultured cells. FEBS Lett. 410, 229-234.
  • Schnitzer, J.E., Liu, J. & Oh, P. (1995) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem. 270, 14399-14404.
  • Sobieszek, A. & Bremel, R.D. (1975) Preparation and properties of vertebrate smooth-muscle myofibrils and actomyosin. Eur. J. Biochem. 55, 49-60.
  • Smart, E.J., Ying, Y.S., Mineo, C. & Anderson, R.G. (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. U.S.A. 92, 10104-10108.
  • Towbin, H.T., Staehelin, J. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and applications. Proc. Natl. Acad. Sci. U.S.A. 76, 4350-4354.
  • Zaks, W.J. & Creutz, C.E. (1991) Ca2+-dependent annexin self-association on membrane surfaces. Biochemistry 30, 9607-9615.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.