Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 3 | 529-539
Article title

Plasma membrane Ca2+ -ATPase in excitable and nonexcitable cells.

Title variants
Languages of publication
There is a significant number of data confirming that the maintenance of calcium homeostasis in a living cell is a complex, multiregulated process. Calcium efflux from excitable cells (i.e., neurons) occurs through two main systems - an electrochemically driven Na+/Ca2+ exchanger with a low Ca2+ affinity (K0.5 = 10-15 μM), and a plasmalemmal, specific Ca2+-ATPase, with a high Ca2+ affinity (K0.5 < 0.5-1 μM), whereas in nonexcitable cells (i.e., erythrocytes) the calcium pump is the sole system responsible for the extrusion of calcium ions. The plasma membrane Ca2+-ATPase (PMCA) is a ubiquitously expressed protein, and more than 26 transcripts of four PMCA genes are distributed in a tissue specific manner. Differences in the structure and localization of PMCA variants are thought to correlate with specific regulatory properties and may have consequences for proper cellular Ca2+ signaling. The regulatory mechanisms of calcium pump activity have been studied extensively, resulting in a new view of the functioning of this important molecule in the membranes.
Physical description
  • 1. Egelman, D.M. & Montague, P.R. (1999) Calcium dynamics in the extracellular space of mammalian neural tissue. Biophys. J. 76, 1856-1867.
  • 2. Racay, P., Kaplan, P. & Lehotsky, J. (1996) Control of Ca2+ homeostasis in neuronal cells. Gen. Physiol. Biophys. 15, 193-210.
  • 3. Guerini, D. (1998) The Ca2+ pumps and the Na+/Ca2+ exchangers. BioMetals 11, 319- 330.
  • 4. Monteith, G.R., Wanigasekara, Y. & Roufogalis, B.D. (1998) The plasma membrane calcium pump, its role and regulation: New complexities and possibilities. J. Pharmacol. Toxicol. Meth. 40, 183-190.
  • 5. Salvador, J.M., Inesi, G., Rigaud, J.L. & Mata, A.M. (1998) Ca2+ transport by reconstituted synaptosomal ATPase is associated with H+ countertransport and net charge displacement. J. Biol. Chem. 273, 18230-18234.
  • 6. Penniston, J.T. & Enyedi, A. (1998) Modulation of the plasma membrane Ca2+ pump. J. Membr. Biol. 165, 101-109.
  • 7. Filoteo, A.G., Elwess, N.L., Enyedi, A., Caride, A., Aung, H.H. & Penniston, J.T. (1997) Plasma membrane Ca2+ pump in rat brain. J. Biol. Chem. 272, 23741-23747.
  • 8. Anderson, R.G.W. (1998) The caveolae membrane system. Annu. Rev. Biochem. 67, 199-225.
  • 9. Keeton, T.P., Burk, S.E. & Shull, G.E. (1993) Alternative splicing of exons encoding the calmodulin-binding domains and C termini of plasma membrane Ca2+-ATPase isoforms 1, 2, 3, and 4. J. Biol. Chem. 268, 2740-2748.
  • 10. Guerini, D. (1998) The significance of the isoforms of plasma membrane calcium ATPase. Cell Tissue Res. 292, 191-197.
  • 11. Wang, M.G., Yi, H., Hilfiker, H., Carafoli, E., Strehler, E.E. & McBride, O.W. (1994) Localization of two genes encoding plasma membrane Ca2+-ATPase isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26->p25 and Xq28, respectively. Cytogenet. Cell Genet. 67, 41-45.
  • 12. Stauffer, T.P., Guerini, D. & Carafoli, E. (1995) Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. J. Biol. Chem. 270, 12184-12190.
  • 13. Eakin, T.J., Antonelli, M.C., Malchiodi, E.L., Baskin, D.G. & Stahl, W.L. (1995) Localization of the plasma membrane Ca2+-ATPase isoform PMCA3 in rat cerebellum, choroid plexus and hippocampus. Mol. Brain Res. 29, 71-80.
  • 14. Lehotsky, J., Kaplan, P., Racay, P., Mezesova, V. & Raeymaekers, L. (1999) Distribution of plasma membrane Ca2+ pump (PMCA) isoforms in the gerbil brain: Effect of ischemia-reperfusion injury. Neurochem. Int. 35, 221-227.
  • 15. Salvador, J.M. & Mata, A.M. (1998) Characterization of the intracellular and the plasma membrane Ca2+-ATPases in fractionated pig brain membranes using calcium pump inhibitors. Arch. Biochem. Biophys. 351, 272-278.
  • 16. Stauffer, T.P., Guerini, D., Celio, M.R. & Carafoli, E. (1997) Immunolocalization of the plasma membrane Ca2+ isoforms in the rat brain. Brain Res. 748, 21-29.
  • 17. Zacharias, D.A., Dalrymple, S.J. & Strehler, E.E. (1995) Transcript distribution of plasma membrane Ca2+ pump isoforms and splice variants in the human brain. Mol. Brain Res. 28, 263-272.
  • 18. Zacharias, D.A., De Marco, S.J. & Strehler, E.E. (1997) mRNA expression of the four isoforms of the human plasma membrane Ca2+-ATPase in the human hippocampus. Brain Res. Mol. Brain Res. 45, 173-176.
  • 19. Zacharias, D.A. & Kappen, C. (1999) Developmental expression of the four plasma membrane calcium ATPase (PMCA) genes in the mouse. Biochim. Biophys. Acta 1428, 397- 405.
  • 20. Fresu, L., Dehpour, A., Genazzani, A., Carafoli, E. & Guerini, D. (1999) Plasma membrane calcium ATPase isoforms in astrocytes. Glia 28, 150-155.
  • 21. Guerini, D., Garcia-Martin, E., Gerber, A., Volbracht, C., Leist, M., Gutierrez-Merino, C. & Carafoli, E. (1999) The expression of plasma membrane Ca2+ pump isoforms in cerebellar granule neurons is modulated by Ca2+. J. Biol. Chem. 274, 1667-1676.
  • 22. Garcia, M.L., Murray, K.D., Garcia, V.B., Strehler, E.E. & Isackson, P.J. (1997) Seizure-induced alterations of plasma membrane calcium ATPase isoforms 1, 2, and 3 mRNA and protein in rat hippocampus. Brain Res. Mol. Brain Res. 45, 230-238.
  • 23. Guerini, D., Wang, X., Li, L., Genazzani, A. & Carafoli, E. (2000) Calcineurin controls the expression of isoform 4CII of the plasma membrane Ca2+ pump in neurons. J. Biol. Chem. 275, 3706-3712.
  • 24. Carafoli, E., Genazzani, A. & Guerini, D. (1999) Calcium controls the transcription of its own transporters and channels in developing neurons. Biochem. Biophys. Res. Commun. 266, 624-632.
  • 25. Barford, D. (1999) Structural studies of reversible protein phosphorylation and protein phosphatases. Biochem. Soc. Trans. 27, 751-766.
  • 26. Price, N.E. & Mumby, M.C. (1999) Brain protein serine/threonine phosphatases. Curr. Opin. Neurobiol. 9, 336-342.
  • 27. Neyses, L., Reinlib, L. & Carafoli, E. (1985) Phosphorylation of the Ca2+-pumping ATPase of heart sarcolemma and erythrocyte plasma membrane by the cAMP-dependent protein kinase. J. Biol. Chem. 260, 10283-10287.
  • 28. James, P.H., Pruschy, M., Vohrerr, T., Penniston, J.T. & Carafoli, E. (1989) Primary structure of the cAMP-dependent phosphorylation site of the plasma membrane calcium pump. Biochemistry 28, 4253-4258.
  • 29. Khan, I. & Grover, A.K. (1991) Expression of cyclic-nucleotide-sensitive and -insensitive isoforms of the plasma membrane Ca2+ pump in smooth muscle and other tissues. Biochem. J. 277, 345-349.
  • 30. Furukawa, K.I., Tawada, Y. & Shikegawa, M. (1989) Protein kinase C activation stimulates plasma membrane Ca2+ pump in cultured vascular smooth muscle cells. J. Biol. Chem. 264, 4844-4849.
  • 31. Smallwood, J.I., Gugi, B. & Rasmussen, H. (1988) Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J. Biol. Chem. 263, 2195-2202.
  • 32. Tao, J., Johansson, J.S. & Haynes, D.H. (1992) Protein kinase C stimulates dense tubular Ca2+ uptake in the intact human platelet by increasing the Vm of the Ca2+-ATPase pump: Stimulation by phorbol ester, inhibition by calphostin C. Biochim. Biophys. Acta 1107, 213-222.
  • 33. Wang, K.K.W., Wright, L.C., Machan, C.L., Allen, B.G., Conigrave, A.D. & Roufogalis, B.D. (1991) Protein kinase C phosphorylates the carboxyl terminus of the plasma membrane Ca2+-ATPase from human erythrocytes. J. Biol. Chem. 266, 9078-9085.
  • 34. Wright, L.C., Chen, S. & Roufogalis, B.D. (1993) Regulation of the activity and phosphorylation of the plasma membrane Ca2+-ATPase by protein kinase C in intact human erythrocytes. Arch. Biochem. Biophys. 306, 277-284.
  • 35. Hofmann, F., Anagli, J., Carafoli, E. & Vorherr, T. (1994) Phosphorylation of the calmodulin binding domain of the plasma membrane Ca2+ pump by protein kinase C reduces its interaction with calmodulin and with its pump receptor site. J. Biol. Chem. 269, 24298-24303.
  • 36. Enyedi, A., Elwess, N.L., Filoteo, A.G., Verma, A.K., Paszty, K. & Penniston, J.T. (1997) Protein kinase C phosphorylates the a forms of plasma membrane Ca2+ pump isoforms 2 and 3 and prevents binding of calmodulin. J. Biol. Chem. 272, 27525-27528.
  • 37. Verma, A.K., Paszty, K., Filoteo, A.G., Penniston, J.T. & Enyedi, A. (1999) Protein kinase C phosphorylates plasma membrane Ca2+ pump isoform 4a at its calmodulin binding domain. J. Biol. Chem. 274, 527-531.
  • 38. Enyedi, A., Verma, A.K., Filoteo, A.G. & Penniston, J.T. (1996) Protein kinase C activates the plasma membrane Ca2+ pump isoform 4b by phosphorylation of an inhibitory region downstream of the calmodulin- binding domain. J. Biol. Chem. 271, 32461- 32467.
  • 39. Kosk-Kosicka, D. & Żylińska, L. (1997) Protein kinase C and calmodulin effects on the plasma membrane Ca2+-ATPase from excitable and nonexcitable cells. Mol. Cell. Biochem. 173, 79-87.
  • 40. Grosman, N. (1998) Influence of probes for calcium-calmodulin and protein kinase C signalling on the plasma membrane Ca2+-ATPase activity of rat synaptosomes and leukocyte membranes. Immunopharmacology 40, 163- 171.
  • 41. Żylińska, L., Gromadzińska, E. & Lachowicz, L. (1996) Okadaic acid as a probe for regulation in vitro of Mg-dependent Ca2+- ATPase activity in rat cortical and cerebellar synaptosomal membranes. Cell. Signal. 8, 443-448.
  • 42. Żylińska, L., Guerini, D., Lachowicz, L. & Gromadzińska, E. (1998) Protein kinases A and C phosphorylate purified Ca2+-ATPase from rat cortex, cerebellum and hippocampus. Biochim. Biophys. Acta, 1448, 99-108.
  • 43. Farrar, Y.J.K. & Vanaman, T.C. (1994) Reversible phosphorylation of plasma membrane calcium pumping ATPase by protein kinase C and protein phosphatase 2A. FASEB J. Abstracts 8, 2, A1390.
  • 44. Żylińska, L., Gromadzińska, E. & Lachowicz, L. (1999) Rat brain Ca2+-ATPase is a substrate for protein phosphatases PP1 and PP2A. Cell. Mol. Biol. Lett. 4, 599-610.
  • 45. Ricciarelli, R. & Azzi, A. (1998) Regulation of recombinant PKCα activity by protein phosphatase 1 and protein phosphatase 2A. Arch. Biochem. Biophys. 355, 197-200.
  • 46. Baulieu, E.E. (1998) Neurosteroids: A novel function of the brain. Psychoneuroendocrinology 23, 963-987.
  • 47. ffrench-Mullen, J.M.H., Danks, P. & Spence, K.T. (1994) Neurosteroids modulate calcium currents in hippocampal CA1 neurons via a pertussis toxin-sensitive G-protein-coupled mechanism. J. Neurosci. 14, 1963-1977.
  • 48. Irwin, R.P., Maragakis, N.J., Rogawski, M.A., Purdy, R.H., Farb, D.H. & Paul, S.M. (1992) Pregnenolone sulfate augments NMDA receptor mediated increases in intracellular Ca2+ in cultured rat hippocampal neurons. Neurosci. Lett. 141, 30-34.
  • 49. Mensah-Nyagan, A.G., Do-Rego, J.L., Beaujean, D., Luu-The, V., Pelletier, G. & Vaudry, H. (1999) Neurosteroids: Expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol. Rev. 51, 63-81.
  • 50. Rupprecht, R. & Holsboer, F. (1999) Neuropsychopharmacological properties of neuroactive steroids. Steroids 64, 83-91.
  • 51. Deliconstantinos, G. (1988) Structure activity relationship of cholesterol and steroid hormones with respect to their effects on the Ca2+-stimulated ATPase and lipid fluidity of synaptosomal plasma membranes from dog and rabbit brain. Comp. Biochem. Physiol. B89, 585-594.
  • 52. Żylińska, L. & Legutko, B. (1998) Neuroactive steroids modulate in vitro the Mg-dependent Ca2+-ATPase activity in cultured rat neurons. Gen. Pharmac. 30, 533-536.
  • 53. Żylińska, L., Gromadzińska, E. & Lachowicz, L. (1999) Short-time effects of neuroactive steroids on rat cortical Ca2+-ATPase activity. Biochim. Biophys. Acta 1437, 257-264.
  • 54. De Zwart, L., Meerman, J.H.N., Commandeur, J.N.M. & Vermeulen, N.P.E. (1999) Biomarkers of free radical damage application in experimental animals and in humans. Free Radic Biol. Med. 26, 202-226.
  • 55. Mishra, O.P. & Delivoria-Papadopulos, M. (1999) Cellular mechanisms of hypoxic injury in the developing brain. Brain Res. Bull. 48, 233-238.
  • 56. Ducrocq, C., Blanchard, B., Pignatelli, B. & Ohshima, H. (1999) Peroxynitrite: An endogenous oxidizing and nitrating agent. Cell. Mol. Life Sci. 55, 1068-1077.
  • 57. Soszynski, M. & Bartosz, G. (1996) Effect of peroxynitrite on erythrocytes. Biochim. Biophys. Acta 1291, 107-114.
  • 58. Balabanli, B., Kamisaki, Y., Martin, E. & Murad, F. (1999) Reqirements for heme and thiols for the nonenzymatic modification of nitrotyrosine. Proc. Natl. Acad. Sci. U.S.A. 96, 13136-13141.
  • 59. Kourie, J.I. (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 275, C1-24.
  • 60. Racay, P., Kaplan, P., Mezesova, V. & Lehotsky, J. (1997) Lipid peroxidation both inhibits Ca2+-ATPase and increases Ca2+ permeability of endoplasmic reticulum membrane. Biochem. Mol. Biol. Int. 41, 647-655.
  • 61. Pereira, C., Ferreira, C., Carvalho, C. & Oliveira, C. (1996) Contribution of plasma membrane and endoplasmic reticulum Ca2+-ATPases to the synaptosomal [Ca2+]i increase during oxidative stress. Brain Res. 713, 269-277.
  • 62. Tien, M., Berlett, B.S., Levine, R.L., Chock, P.B. & Stadtman, E.R. (1999) Peroxynitrite- mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionone oxidation. Proc. Natl. Acad. Sci. U.S.A. 96, 7809-7814.
  • 63. Marla, S.S., Lee, J. & Groves, J.T. (1997) Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 94, 14243-14248.
  • 64. Żylińska, L., Soszyński, M., Sobolewska, B. & Gulczynska, E. (1999) Characterization of erythrocyte compounds in asphyxiated newborns. Mol. Cell Biol. Res. Commun. 2, 185-189.
  • 65. Soszyński, M., Filipiak, A., Bartosz, G. & Gebicki, J.M. (1996) Effect of amino acid peroxides on the erythrocyte. Free Radical Biol. Med. 20, 45-51.
  • 66. Zaidi, A. & Michaelis, M.L. (1999) Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase. Free Radical Biol. Med. 27, 810-821.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.