PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 2 | 451-457
Article title

A new look at adaptive mutations in bacteria.

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
This is a short survey of the adaptive mutation processes that arise in non- or slowly- dividing bacterial cells and includes: (i) bacterial models in which adaptive mutations are studied; (ii) the mutagenic lesions from which these mutations derive; (iii) the influence of DNA repair processes on the spectrum of adaptive mutations. It is proposed that in starved cells, likely as during the MFD phenomenon, lesions in tRNA suppressor genes are preferentially repaired and no suppressor tRNAs are formed as a result of adaptive mutations. Perhaps the most provocative proposal is (iv) a hypothesis that the majority of adaptive mutations are selected in a pre-apoptotic state where the cells are either mutated, selected, and survive, or they die.
Publisher

Year
Volume
47
Issue
2
Pages
451-457
Physical description
Dates
published
2000
received
1999-10-12
accepted
2000-04-20
Contributors
author
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106 Warszawa, Poland
References
  • 1. Cairns, J., Overbaugh, J. & Miller, S. (1988) The origin of mutants. Nature 335, 142-145.
  • 2. Cairns, J. & Foster, P.L. (1991) Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128, 695-701.
  • 3. Hall, B.G. (1990) Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126, 5-16.
  • 4. Hall, B.G. (1998) Adaptive mutagenesis: A process that generates almost exclusively beneficial mutations. Genetica 102, 109-125.
  • 5. Foster, P.L. (1993) Adaptive mutation: The uses of adversity. Annu. Rev. Microbiol. 47, 467-504.
  • 6. Foster, P.L. (1998) Adaptive mutation: Has the unicorn landed? Genetics 148, 1453-1459.
  • 7. Hall, B.G. (1997) On the specificity of adaptive mutations. Genetics 145, 39-44.
  • 8. Foster, P.L. (1997) Nonadaptive mutations occur on the F' episome during adaptive mutation conditions in Escherichia coli. J. Bacteriol. 179, 1550-1554.
  • 9. Torkelson, J., Harris, R.S., Lombardo, M.-J., Nagendran, J., Thulin, C. & Rosenberg, S.M. (1997) Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 16, 3303-3311.
  • 10. Foster, P.L. & Cairns, J. (1992) Mechanisms of directed mutation. Genetics 131, 783-789.
  • 11. Rosenberg, S.M. (1994) In pursuit of a molecular mechanism for adaptive mutation. Genome 37, 893-899.
  • 12. Prival, M.J. & Cebula, T.A. (1996) Adaptive mutation and slow-growing revertants of an Escherichia coli lacZ amber mutant. Genetics 144, 1337-1341.
  • 13. Foster, P.L. & Trimarchi, J.M. (1995) Adaptive reversion of a episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc. Natl. Acad. Sci. U.S.A. 92, 5487-5490.
  • 14. Radicella, J.P., Park, P.U. & Fox, M.S. (1995) Adaptive mutation in Escherichia coli: A role for conjugation. Science 268, 418-420.
  • 15. Galitsky, T. & Roth, J.R. (1995) Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Science 268, 421- 423.
  • 16. Bridges, B.A. (1994) Starvation-associated mutation in Escherichia coli: A spontaneous lesion hypothesis for directed mutation. Mutat. Res. 307, 149-156.
  • 17. Bridges, B.A. & Timms, A.R. (1997) Mutation in Escherichia coli under starvation conditions: A new pathway leading to small deletions in strains defective in mismatch correction. EMBO J. 16, 3349-3356.
  • 18. Bridges, B.A. & Ereira, S. (1998) DNA synthesis and viability of a mutT derivative of Escherichia coli WP2 under conditions of amino acid starvation and relation to stationary-phase (adaptive) mutation. J. Bacteriol. 180, 2906- 2910.
  • 19. Prival, M.J. & Cebula, T.A. (1992) Sequence analysis of mutations arising during prolonged starvation of Salmonella typhimurium. Genetics 132, 303-310.
  • 20. Taverna, P. & Sedgwick, B. (1996) Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli. J. Bacteriol. 178, 5105-5111.
  • 21. Bridges, B.A. (1995) mutY directs mutation? Nature 375, 741.
  • 22. Bridges, B.A. (1996) Elevated mutation rate in mutT bacteria during starvation: Evidence of DNA turnover? J. Bacteriol. 178, 2709- 2711.
  • 23. Bridges, B.A., Sekiguchi, M. & Tajiri, T. (1996) Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: Implications for the role of 7,8-dihydro- 8-oxoguanine. Mol. Gen. Genet. 251, 352- 357.
  • 24. Nghiem, Y., Cabrera, M., Cupples, C.G. & Miller, J.H. (1992) The mutY gene: A mutator locus in Escherichia coli that generates GC→AT transversions. Proc. Natl. Acad. Sci. U.S.A. 85, 2709-2713.
  • 25. Moriya, M. & Grollman, A.P. (1993) Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C→T:A transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol. Gen. Genet. 239, 72-76.
  • 26. Maki, H. & Sekiguchi, M. (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273-275.
  • 27. Taddei, F., Hayakawa, H., Bouton, M.-F., Crinesi, I., Matic, I., Sekiguchi, M. & Radman, M. (1997) Counteraction by Mut Y protein of transcriptional errors caused by oxidative damage. Science 278, 128-130.
  • 28. Bridges, B.A. (1997) MutT prevents leakness. Science 278, 78-79.
  • 29. Cheng, K.C., Cahill, D.S., Kasai, H., Loeb, L.A. & Nishimura, S. (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G T and A C substitutions. J. Biol. Chem. 267, 166-172.
  • 30. Shibutani, S., Takeshita, M. & Grollman, A.P. (1991) Insertion of specific bases during DNA synthesis past the oxidation damaged base 8-oxoG. Nature 349, 431-434.
  • 31. Foster, P.L., Gudmundsson, G., Trimarchi, J.M., Cai, H. & Goodman, M.F. (1995) Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92, 7951-7955.
  • 32. Harris, R.S., Bull, H.J. & Rosenberg, S.M. (1997) A direct role for DNA polymerase III in adaptive reversion of a frameshift mutation in Escherichia coli. Mutat. Res. 375, 19-24.
  • 33. Timms, A.R. & Bridges, B.A. (1998) Reversion of the tyrosine ochre strain Escherichia coli WU3610 under starvation conditions depends on a new gene tas. Genetics 148, 1627-1635.
  • 34. Ripley, L.S. (1990) Frameshift mutation: Determinants of specificity. Annu. Rev. Genet. 24, 189-213.
  • 35. Foster, P.L. (1999) Are adaptive mutations due to decline in repair? The evidence is lacking. Mutat. Res. 436, 179-184.
  • 36. Harris, R.S., Feng, G., Ross, K.J., Sidhu, R., Thulin, C., Longerich, S., Szigety, S.K., Hastings, P.J., Winkler, M.E. & Rosenberg, S.M. (1999) Mismatch repair is diminished during stationary-phase mutation. Mutat. Res. 437, 51-60.
  • 37. Bregeon, D., Matic, I., Radman, M. & Taddei, F. (1999) Inefficient mismatch repair: Genetic defects and down regulation. Indian Acad. Sci. 78, 21-28.
  • 38. Longerich, S., Galloway, A.M., Harris, R.S., Wong, C. & Rosenberg, S.M. (1995) Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc. Natl. Acad. Sci. U.S.A. 92, 12017-12020.
  • 39. Witkin, E.M. (1994) Mutation frequency decline revisited. BioEssays 16, 437-444.
  • 40. Wójcik, A. & Janion, C. (1997) Mutation induction and mutation frequency decline in halogen light-irradiated Escherichia coli K-12 AB1157 strains. Mutat. Res. 390, 85-92.
  • 41. Fabisiewicz, A. & Janion, C. (1998) DNA mutagenesis and repair in UV-irradiated E. coli K-12 under condition of mutation frequency decline (MFD). Mutat. Res. 402, 59-66.
  • 42. Bockrath, R., Barlow, A. & Engstrom, J. (1987) Mutation frequency decline in Escherichia coli B/r after mutagenesis with ethyl methanesulfonate. Mutat. Res. 183, 241- 247.
  • 43. Grzesiuk, E. & Janion, C. (1994) The frequency of MMS-induced, umuDC-dependent, mutations decline during starvation in Escherichia coli. Mol. Gen. Genet. 245, 486-492.
  • 44. Selby, C.P., Witkin, S.M. & Sancar, A. (1991) Escherichia coli mfd mutant deficient in mutation frequency decline lacks strand-specific repair: In vitro complementation with purified coupling factor. Proc. Natl. Acad. Sci. U.S.A. 88, 11574-11578.
  • 45. Selby, C.P. & Sancar, A. (1994) Mechanism of transcription-repair coupling and mutation frequency decline. Microbiol. Rev. 58, 317- 329.
  • 46. Bridges, B.A. (1995) Starvation-associated mutation in Escherichia coli strains defective in transcription repair coupling factor. Mutat. Res. 329, 49-56.
  • 47. Taddei, F., Matic, I. & Radman, M. (1995) cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc. Natl. Acad. Sci. U.S.A. 92, 11736-11740.
  • 48. Walker, G.W. (1995) SOS-regulated proteins in translesion. DNA synthesis and mutagenesis. Trends Biochem. Sci. 20, 416-420.
  • 49. Koch, W.H. & Woodgate, R. (1998) The SOS response; in DNA Damage and Repair (Nickoloff, J.A., Hoekstra M.F., eds.) vol. 1, pp. 107-134, Humana Press Inc. Totowa.
  • 50. Gurley, L.R. Jandacek, A.L., Valdez, J.G., Sebring, R.J., D'Anna, J.A. & Puck, T. (1998) Br-cAMP induction of apoptosis in synchronized CHO cells. Somat. Cell Mol. Genet. 24, 173-190.
  • 51. Yarmolinsky, M.B. (1995) Programmed cells death in bacterial populations. Science 267, 836-837.
  • 52. Boe, L. (1990) Mechanism for induction of adaptive mutations in Escherichia coli. Molec. Microbiol. 4, 597-601.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv47i2p451kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.