PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 2 | 427-434
Article title

Differences of α3β1 integrin glycans from different human bladder cell lines.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Expression as well as properties of integrins are altered upon transformation. Cell adhesion regulated by integrins is modulated by glycosylation, one of the most frequent biochemical alteration associated with tumorogenesis. Characterisation of carbohydrate moieties of α3β1 integrin on the cultured human bladder carcinoma (T-24, Hu456, HCV 29T) and human normal ureter and bladder epithelium (HCV 29, Hu609) cell lines was carried out after an electrophoresis and blotting, followed by immunochemical identification of α3 and β1 integrin chains and analysis of their carbohydrates moieties using highly specific digoxigenin-labelled lectins. In all the studied cell lines α3β1 integrin was glycosylated although in general each subunit differently. Basic structures recognized in β1 subunit were tri- or tetraantennary complex type glycans in some cases sialylated (T-24, HCV 29, HCV 29T) and fucosylated (Hu609, HCV 29T). Positive reaction with Phaseolus vulgaris agglutinin and Datura stramonium agglutinin suggesting the presence of β1-6 branched N-linked oligosaccharides was found in cancerous cell lines (T-24, Hu456) as well as in normal bladder epithelium cells (Hu609). High mannose type glycan was found only in β1 subunit from Hu456 transitional cell cancer line. On the other hand α3 subunit was much less glycosylated except the invasive cancer cell line T-24 where high mannose as well as sialylated tri- or tetraantennary complex type glycans were detected. This observation suggests that changes in glycosylation profile attributed to invasive phenotype are rather associated with α3 not β1 subunit.
Year
Volume
47
Issue
2
Pages
427-434
Physical description
Dates
published
2000
received
1999-11-3
accepted
2000-02-17
References
  • 1. Humphries, M.J. & Newham, P. (1998) The structure of cell-adhesion molecules. Trends Cell Biol. 8, 78-83.
  • 2. Keely, P., Parise, L. & Juliano, R. (1998) Integrins and GTPases in tumor cell growth, motility and invasion. Trends Cell Biol. 8, 101-106.
  • 3. Longhurst, C.M. & Jennings, L.K. (1998) Integrin-mediated signal transduction. Cell. Mol. Life Sci. 54, 514-526.
  • 4. Sanders, R.J., Mainiero, F. & Giancotti, F.G. (1998) The role of integrins in tumorogenesis and metastasis. Cancer Invest. 16, 329-344.
  • 5. Fujita, S., Suzuki, H., Kinoshita, M. & Hirohashi, S. (1992) Inhibition of cell attachment, invasion and metastasis of human carcinoma cells by anti-integrin β1 subunit antibody. Jpn. J. Cancer Res. 83, 1317-1326.
  • 6. Patriarca, C., Ivany, D., Fles, D., de Melker, A., van Doornewaard, G., Oomen, L., Alfano, R.S., Coggi, G. & Sonnernberg, A. (1995) Distribution of extracellular and cytoplasmic domain of the α3 and α6 integrin subunits in solid tumors. Int. J. Cancer 63, 182-189.
  • 7. Heino, J. (1996) Biology of tumor cell invasion: Interplay of cell adhesion and matrix degradation. Int. J. Cancer 65, 717-722.
  • 8. Judware, R. & Culp, L.A. (1997) Extracellular matrix and matrix receptors: Alterations during tumor progression. Encyclopedia of Cancer 1, 660-679.
  • 9. Clezardin, P. (1998) Recent insights into the role of integrins in cancer metastasis. Cell Mol. Life Sci. 54, 541-548.
  • 10. Elices, M.J., Urry, L.A. & Hemler, M.E. (1991) Receptor function for the integrin VLA-3: Fibronectin, collagen, and laminin binding are differentially influenced by ARG-GLY-ASP peptide and by divalent cations. J. Cell Biol. 112, 169-181.
  • 11. Gehlsen, K.R., Dickerson, K., Argravest, W.S., Engvall, E. & Ruoslahti, E. (1989) Subunit structure of a laminin-binding integrin and localization of its binding site on laminin. J. Biol. Chem. 264, 19034-19038.
  • 12. Smith, B.E., Bradshaw, A.D., Choi, E.S.H., Rouselle, P., Wayner, E.A. & Clegg, D.O. (1996) Human SY5Y neuroblastoma cell interactions with laminin isoforms: Neurite outgrowth on laminin-5 is mediated by integrin α3β1. Cell Adhesion Comm. 3, 451-462.
  • 13. Fukushima, Y., Ohnishi, T., Arita, N., Hayakawa, T. & Sekiguchi, K. (1998) Integrin α3β1 mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignat glioma cells. Int. J. Cancer 76, 63-72.
  • 14. Tawil, N.J., Gowr, V., Djoneidi, M., Nip, J., Carbonetti, S. & Brodt, P. (1996) Integrin α3β1 can promote adhesion and spreading of metastatic breast carcinoma cells on the lymph node stroma. Int. J. Cancer 66, 703-710.
  • 15. Sriramarao, P., Steffner, P. & Gehlsen, K.R. (1993) Biochemical evidence for a homophilic interaction of the α3β1 integrin. J. Biol. Chem. 268, 22036-22041.
  • 16. Symington, B.E., Takada, Y. & Carter, W.G. (1993) Interaction of integrins α3β1 and α2β1: Potential role in keratinocyte intercellular adhesion. J. Cell Biol. 120, 523-535.
  • 17. Varki, A. (1993) Biological roles of oligosaccharides: All the theories are correct. Glycobiology 3, 97-130.
  • 18. Nakagawa, H., Zheng, M., Hakomori, S-i., Tsukamoto, Y., Kawamura, Y. & Takahashi, N. (1996) Detailed oligosaccharide structures of human integrin α5β1 analyzed by three- dimensional mapping technique. Eur. J. Biochem. 237, 76-85.
  • 19. Prokopishyn, N.L., Puzon-McLaughlin, W., Takada, Y. & Laferte, S. (1999) Integrin α3β1 expressed by human colon cancer cells is a major carrier of oncodevelopemental carbohydrate epitopes. J. Cell Biochem. 72, 189-209.
  • 20. Eble, J.A., Wucherpfenning, K.W., Gauthier, L., Dersch, P., Krukonis, E., Isberg, R.R. & Hemler, M.E. (1998) Recombinant soluble human α3β1 integrin: Purification, processing, regulation, and specific binding to laminin-5 and invasin in a mutually exclusive manner. Biochemistry 37, 10945-10955.
  • 21. Bubenick, J., Baresova, M., Viklicky, V., Jakoubkova, J., Sainerova, H. & Donner, J. (1973) Established cell line of urinary bladder carcinoma (T24) containing tumor specific antigen. Int. J. Cancer 11, 765-773.
  • 22. Vilien, M., Christensen, B., Wolf, H., Rassmussen, F., Hou-Jensen, C. & Povlsen, C.O. (1983) Comparative studies of normal, spontaneously' transformed and malignant human urothelium cells in vitro. Eur. J. Cancer Clin. Oncol. 19, 775-789.
  • 23. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 690-685.
  • 24. Towbin, H., Staechelin, T. & Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 76, 4350-4355.
  • 25. Haselbeck, A., Schickanader, E., von der Eltz, H. & Hosel, W. (1990) Structural characterization of glycoprotein carbohydrate chains by using digoxigenin-labeled lectins on blot. Anal. Biochem. 191, 25-30.
  • 26. Lityńska, A. & Przybyło, M. (1998) Age-related profile of β-N-acetylhexosaminidase glycosylation in rat liver. Acta Biochim. Polon. 45, 791-797.
  • 27. Bradford, M.M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
  • 28. Dennis, J.W., Laferte, S., Warghorne, C., Breitman, M.L. & Kerbel, R.S. (1987) β1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236, 582-584.
  • 29. Dennis, J.W., Laferte, S. & Venderelst, I. (1988) Asparagine-linked oligosaccharides in malignant tumor growth. Biochem. Soc. Trans. 17, 29-31.
  • 30. Fernandes, B., Sagman, V., Auger, M., Demetrio, M. & Dennis, J.W. (1991) β1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res. 51, 718-723.
  • 31. Dall'Olio, F. (1996) Protein glycosylation in cancer biology: An overview. Clin. Mol. Pathol. 49, 126-135.
  • 32. Fukuda, F. (1996) Possible roles of tumor-associated carbohydrate antigens. Cancer Res. 56, 2237-2244.
  • 33. Laidler, P. & Lityńska, A. (1997) Tumor N-glycans and metastasis. Acta Biochim. Polon. 44, 343-358.
  • 34. Orntoft, T.F. & Wolf, H. (1998) Molecular alteration in bladder cancer. Urol. Res. 26, 223-233.
  • 35. Orlow, I., Lacombe, L., Pellicer, I., Rabbani, F., Delgado, R., Zhang, Z.-F., Szijan, I. & Cordon-Cardo, C. (1998) Genotypic and phenotypic characterization of the histoblood group AB0(H) in primary bladder tumors. Int. J. Cancer 75, 819-824.
  • 36. Akiyama, S.K., Yamada, S.S. & Yamada, K.M. (1989) Analysis of the role of glycosylation of the human fibronectin receptor. J. Biol. Chem. 264, 18011-18018.
  • 37. Zheng, M., Fang, H. & Hakomori, S. (1994) Functional role of N-glycosylation in α5β1 integrin receptor. J. Biol. Chem. 269, 12325- 12331.
  • 38. Chammas, R., Veiga, S.S., Travassos, L.R. & Brentani, R.R. (1993) Functionally distinct roles for glycosylation of α and β integrin chains in cell-matrix interactions. Proc. Natl. Acad. Sci. U.S.A. 90, 1795-1799.
  • 39. Takada, Y., Murphy, E., Pil, P., Chen, C., Ginsberg, M.H. & Hemler, M.E. (1991) Molecular cloning and expression of the cDNA for alpha3 subunit of human alpha3beta1 (VLA-3), an integrin receptor for fibronectin, laminin and collagen. J. Cell Biol. 115, 257-266.
  • 40. Laferte, S. & Loh, L.C. (1992) Characterization of a family of structurally related glycoproteins expressing β1-6 branched asparigine- linked oligosaccharides in human colon cancer cells. Biochem. J. 283, 193-201.
  • 41. Demetriou, M., Nabil, I.R., Coppolino, M., Dedhar, S. & Dennis, J.W. (1995) Reduced contact-inhibition and substratum adhesion in epithelial cells expressin GlcNAc-transferase V. J. Cell Biol. 130, 383
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv47i2p427kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.