Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 1 | 47-57
Article title

The role of side chains in the interaction of new antitumor pyrimidoacridinetriones with DNA: Molecular dynamics simulations.

Title variants
Languages of publication
Pyrimidoacridinetriones (PATs) are a new group of highly active antitumor compounds. It seems reasonable to assume that, like for some other acridine derivatives, intercalation into DNA is a necessary, however not a sufficient condition for antitumor activity of these compounds. Rational design of new compounds of this chemotype requires knowledge about the structure of the intercalation complex, as well as about interactions responsible for its stability. Computer simulation techniques such as molecular dynamics (MD) may provide valuable information about these problems. The results of MD simulations performed for three rationally selected PATs are presented in this paper. The compounds differ in the number and position of side chains. Each of the compounds was simulated in two systems: i) in water, and ii) in the intercalation complex with the dodecamer duplex d(GCGCGCGCGCGC)2. The orientation of the side chain in relation to the ring system is determined by the position of its attachment. Orientation of the ring system inside the intercalation cavity depends on the number and position of side chain(s). The conformations of the side chain(s) of all PATs studied in the intercalation complex were found to be very similar to those observed in water.
Physical description
  • Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, G. Narutowicza 11/12, 80-952 Gdańsk, Poland
  • Department of Chemical Sciences, University of Camerino, 62-032 Camerino (MC), Italy
  • Department of Chemical Sciences, University of Camerino, 62-032 Camerino (MC), Italy
  • 1. Cheng, C.C. & Zee-Cheng, R.K.Y. (1983) The design, synthesis, and development of a new class of potential antineoplastic anthraquinones; in Progress in Medicinal Chemistry (Ellis, G.P. & West, G.B., eds.) pp. 83-118 and references cited therein, Elsevier, Amsterdam.
  • 2. Zee-Cheng, R.K.Y. & Cheng, C.C. (1978) Antineoplastic agents. Structure-activity relationship study of bis(substituted aminoalkyloamino)anthraquinones. J. Med. Chem. 21, 291-294.
  • 3. Zee-Cheng, R.K.Y., Podrebarac, E.G., Menon, C.S. & Cheng, C.C. (1979) Structural modification study of bis(substituted aminoalkyloamino)anthraquinones. An evaluation of the relationship of the [2-[(2-hydroxyethyl)amino]ethyl]amino side chain with antineoplastic activity. J. Med. Chem. 22, 501-505.
  • 4. Murdock, K.C., Child, R.G., Fabio, P.F., Angier, R.B., Wallace, R.E., Durr, F.E. & Citarella, R.V. (1979) Antitumor agents. 1. 1,4- Bis[(aminoalkyl)amino]9,10-anthracenediones. J. Med. Chem. 22, 1024-1030.
  • 5. Durr, F.E. (1988) Biochemical pharmacology and tumor biology of mitoxantrone and ametantrone; in Anthracycline and Anthracenedione-Based Anticancer Agents (Lown, J.W., ed.) pp. 401-445, Elsevier, Amsterdam.
  • 6. Cain, B.F. & Atwell, G.J. (1974) The experimental antitumor properties of three congeners of the acridinyl methanesulphonanilide (AMSA) series. Eur. J. Cancer 10, 539-549.
  • 7. Denny, W.A., Baguley, B.C., Cain, B.F. & Waring, M.J. (1983) Antitumor acridines; in Molecular Aspects of Anticancer Drug Action (Neidle, S. & Waring, M.J., eds.) pp. 1-34, Verlag Chemie, Basel.
  • 8. Showalter, H.D.H., Johnson, J.L., Werbel, L.M., Leopold, W.R., Jackson, R.C. & Elslager, E.F. (1984) 5-[(Aminoalkyl)amino]-substituted anthra-[1,9-cd]-pyrazol-6(2H)-ones as novel anticancer agents. Synthesis and biological evaluation. J. Med. Chem. 27, 253-255.
  • 9. Leopold, W.R., Nelson, J.M., Plowman, J. & Jackson, R.C. (1985) Anthrapyrazoles. A new class of intercalating agents with high level, broad spectrum activity against murine tumors. Cancer Res. 45, 5532-5539.
  • 10. Capps, D.B., Dunbar, J., Kesten, S.R., Shillis, J., Werbel, L.M., Plowman, J. & Ward, D.L. (1992) 2-(Aminoalkyl)-5-nitropyrazolo[3,4,5- kl]acridines. A new class of anticancer agents. J. Med. Chem. 35, 4770-4778.
  • 11. LoRusso, P., Wozniak, J., Polin, L., Capps, D., Leopold, W.R., Werbel, L.M., Biernat, L., Dan, M.E. & Corbett, T.H. (1990) Antitumor efficacy of PD115934 (NSC366140) against solid tumors of mice. Cancer Res. 60, 4900-4905.
  • 12. Showalter, H.D.H., Angelo, M.M., Berman, E.M., Kanter, G.D., Ortwine, D.F., Ross- Kesten, S.G., Turner, W.R., Werbel, L.M., Worth, D.F., Elslager, E.F., Leopold, W.R. & Shillis, J.L. (1988) Benzothiopyranoindazoles, a new class of chromophore modified anthracenedione anticancer agents. Synthesis and activity against murine leukemias. J. Med. Chem. 31, 1527-1539.
  • 13. Atwell, G.J., Rewcastle, G.W., Baguley, B.C. & Denny, W.A. (1987) Potential antitumor agents. 50. In vivo solid-tumor activity of derivatived of N-[2-(diethylamino)ethyl]acridine-4-carboxamide. J. Med. Chem. 30, 664-669.
  • 14. Wakelin, L.P.G., Atwell, G.J., Rewcastle, G.W. & Denny, W.A. (1987) Relationship between DNA-binding kinetics and biological activity for the 9-aminoacridine-4-carboxamide class of antitumor agents. J. Med. Chem. 30, 855-861.
  • 15. Cholody, W.M., Martelli, S., Paradziej-Lukowicz, J. & Konopa, J. (1990) 5-[(Aminoalkyl)- amino]imidazo[4,5,1-de]acridin-6-ones as a novel class of antineoplastic agents. Synthesis and biological activity. J. Med. Chem. 33, 49-52.
  • 16. Cholody, W.M., Martelli, S. & Konopa, J. (1992) Chromophore-modified antineoplastic imidazoacridinones. Synthesis and activity against murine leukemias. J. Med. Chem. 35, 378-382.
  • 17. Cholody, W.M., Martelli, S. & Konopa, J. (1990) 8-Substituted 5-[(aminoalkylamino]- 6H-triazolo[4,5,1-de]acridin-6-ones as potential antineoplastic agents. Synthesis and biological activity. J. Med. Chem. 33, 2852-2586.
  • 18. Antonini, I. & Martelli, S. (1992) The synthesis of a new polycyclic heterocyclic ring system: Pyrimido[5,6,1-de]acridine. J. Heterocyclic Chem. 29, 471-473.
  • 19. Antonini, I., Cola, D., Martelli, S., Cholody, W.M. & Konopa, J. (1992) Pyrimidoacridine derivatives as potential antitumor agents. Il Farmaco, Ed. Sci. 47, 1035-1046.
  • 20. Antonini, I., Cola, D., Polucci, P., Bontemps- Gracz, M., Borowski, E. & Martelli, S. (1995) Synthesis and biological evaluation of dialkylaminoalkyl disubstituted pyrimidoacridinetriones, a novel group of antitumor, resistance reversing agents. J. Med. Chem. 38, 3282-3286.
  • 21. Denny, W.A. (1989) DNA-Intercalating ligands as anticancer drugs: Prospects for future design. Anti-Cancer Drug Des. 4, 241-263.
  • 22. Baguley, B.C. (1991) DNA Intercalating antitumor agents. Anti-Cancer Drug Des. 6, 1-35.
  • 23. Baginski, M., Polucci, P., Antonini, I., Borowski, E. & Martelli, S. (1999) Binding free energy of selected anticancer compounds to DNA theoretical calculations. Biophys. Chem. (in press).
  • 24. Levitt, M. (1982) Computer simulations of DNA double helix dynamics. Cold Spring Harbor Symposia on Quant. Biol. XLVII, 251-262.
  • 25. Cieplak, P., Rao, S.N., Grootenhuis, P.D.J. & Kollman, P.A. (1990) Free energy calculations on base specificity of drug-DNA interactions: Application to daunomycin and acridine intercalation into DNA. Biopolymers 29, 717-727.
  • 26. Creighton, S., Rudolph, B., Lybrand, T., Singh, U.C., Shafer, R., Brown, S., Kollman, P.A. & Andrea, T. (1989) A combined 2D-NMR and molecular dynamics analysis of the structure of the actinomycinD:d(ATCGAT)2 complex. J. Biomol. Struct. Dyn. 6, 929-969.
  • 27. Langley, D.R., Doyle, T.W. & Beveridge, D.L. (1991) The dyneimicin-DNA intercalation complex. A model based on DNA affinity cleavage and molecular dynamics simulations. J. Am. Chem. Soc. 113, 4395-4403.
  • 28. Boehncke, M., Nonella, M., Schulten, K. & Wang, A.H.-J. (1991) Molecular dynamics investigation of the interaction between DNA and dystamycin. Biochemistry 30, 5465-5474.
  • 29. Herzyk, P., Neidle, S. & Goodfellow, J.M. (1992) Conformation and dynamics of drug-DNA intercalation. J. Biomol. Struct. Dyn. 10, 97-139.
  • 30. Mazerski, J., Martelli, S. & Borowski, E. (1998) The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: Molecular dynamics simulations. Acta Biochim. Polon. 45, 1-11.
  • 31. Mazerski, J. & Muchewicz, K. (1999) The intercalation of imidazoacridinones into DNA induces conformational changes in their side chain. Acta Biochim. Polon. 47, 65-78.
  • 32. VanGusteren, W.F., Billeter, S.R., Eising, A.A., Hunenberger, P.H., Kruger, P., Mark, E.A., Scott, W.R.P. & Tiron, I.G. (1996) Biomolecular simulation: GROMOS96 manual and user guide. vdf Hochschulverlag AG, Zurich.
  • 33. Ryckeart, J.P., Ciccotti, G. & Berendsen, J.H.C. (1977) Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327-341.
  • 34. Subraminian, P.S., Ravishanker, G. & Beveridge, D.L. (1991) Molecular dynamics of B-DNA including water and counterions. A 140-ps trajectory for d(CGCGAATTCGCG) based on the GROMOS force field. J. Am. Chem. Soc. 113, 5027-5040.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.