PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 1 | 37-45
Article title

Self-organizing neural network for modeling 3D QSAR of colchicinoids.

Content
Title variants
Languages of publication
EN
Abstracts
EN
A novel scheme for modeling 3D QSAR has been developed. A method involving multiple self-organizing neural network adjusted to be analyzed by the PLS (partial least squares) analysis was used to model 3D QSAR of the selected colchicinoids. The model obtained allows the identification of some structural determinants of the biological activity of compounds.
Keywords
Publisher

Year
Volume
47
Issue
1
Pages
37-45
Physical description
Dates
published
2000
received
1999-10-25
Contributors
  • Department of Organic Chemistry, Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
References
  • 1. Hastie, S.B. (1991) Interactions of colchicine with tubulin. Pharmac. Theor. 51, 377-401.
  • 2. Sackett, D.L. (1993) Podophyllotoxin, steganacin and combrestatin: Natural products that bind at the colchicine site of tubulin. Pharmac. Theor. 59, 163-228.
  • 3. Brossi, A. (1992) Fifteen years of research of bioactive alkaloids. Med. Res. Rev. 12, 1-26.
  • 4. Andreu, J.M. (1998) Role of colchicine ring A and its methoxy groups in binding to tubulin and microtubule inhibition. Biochemistry 37, 8356-8368.
  • 5. Perez-Ramirez, B., Gorbunoff, M.J. & Timasheff, S.N. (1998) Linkages in tubulin- colchicine functions: The role of the ring C(C') oxygens and ring B in the controls. Biochemistry 37, 1646-1661.
  • 6. Andreu, J.M. & Timasheff, S.N. (1982) Interaction of tubulin with single ring analogues of colchicine. Biochemistry 21, 534-543.
  • 7. Chakrabarti, G., Sengupta, S. & Bhattacharyya, B. (1996) Thermodynamics of colchicinoid-tubulin interactions. J. Biol. Chem. 271, 2897-2901.
  • 8. Berg, U. & Bladh, H. (1998) Stereochemical variations on the colchicine motif. Part 4. Remote metalation approach toward a colchicine analog with a five-membered B-ring. Acta Chim. Scan. 52, 1380-1385.
  • 9. Engelborghs, Y. (1998) General features of the recognition by tubulin of colchicine and related comopounds. Eur. Biophys. J. 27, 437-445.
  • 10. Shi, Q., Chen., K., Brossi, A., Verdier-Pinard, P., Hamel, E., McPhail, A.T., Tropsha, A. & Lee, K. (1998) Antitumor agents. 183. Syntheses, conformational analyses and antitubulin activity of allothiocolchicinoids. J. Org. Chem. 63, 4018-4025.
  • 11. Lincoln, P., Nordth, J., Deinum, J., Angstrom, J. & Norden, B. (1991) Conformation of thiocolchicine and two B-ring modified analogues bound to tubulin with optical spectroscopy. Biochemistry 30, 1179-1187.
  • 12. Andreu, J.M. & Timasheff, S.N. (1980) Conformational states of tubulin liganded to colchicine, tropolone methyl ether, and podophyllotoxin. Biochemsitry 21, 6465-6476.
  • 13. Pyle, E.A. & Hastie, S.B. (1993) Conformational analysis of colchicinoids containing an electron-deficient aromatic ring on the B ring. J. Org. Chem. 58, 2751-2759.
  • 14. Boye, O., Itoh, Y. & Brossi, A. (1989) 185. Deaminocolchicinyl methyl ether: Synthesis from 2,3,4,4'-tetramethoxybiphenyl-2-carbaldehyd. Comparison of antitubulin effects of deaminocolchicinyl methyl ether and dehydroanalogs. Helv. Chim. Acta 72, 1690- 1696.
  • 15. Hansch, C. & Gao, H. (1997) Comparative QSAR: Radical reactions of benzene derivatives in chemistry and biology. Chem. Rev. 97, 2995-3059.
  • 16. Kubinyi, H. (1993) QSAR: Hansch analysis and related approaches; in Methods and Principles in Medicinal Chemistry (Mannhold, R., Krokgsgaard-Larsen, P. & Timmerman, H., eds.) VCH, Weinheim.
  • 17. Cramer III, R.D., Patterson, D.E. & Bunce, J.D. (1988) Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959-5967.
  • 18. Kubinyi, H. (1997) QSAR and 3D QSAR in drug design. Part 1. Methodology. Drug Discovery Today 2, 457-467.
  • 19. Gasteiger, J., Li, X., Rudolph, Ch., Sadowski, J. & Zupan, J. (1994) The representation of molecular electrostatic potentials by topological feature maps. J. Am. Chem. Soc. 116, 4608- 4620.
  • 20. Gasteiger, J. & Zupan, J. (1993) Neural Networks for Chemists An Introduction, Chapter 19, pp. 277-291, VCH, Weinheim.
  • 21. Gasteiger, J. & Li, X. (1994) Abbildung elektrostatischer Potentiale muscarinischer und nicotinsicher Agonisten mit kuenstlischen neuronalen Netzen. Angew. Chem. 106 671-674.
  • 22. Polański, J. & Gasteiger, J. (1994) The comparison of molecular surfaces by an assembly of self organizing neural network. Proc. III International Conference Computers in Chemistry 94, June, Wroclaw, Poland, p. 88.
  • 23. Anzali, S., Barnickel, G., Krug, M., Sadowski, J., Wagener, M., Gasteiger, J. & Polański, J. (1996) The comparison of geometric and electronic properties of molecular surfaces by neural networks: Application to the analysis of corticosteroid globulin activity of steroids. J. Comp.-Aided Mol. Design 10, 521.
  • 24. Anzali, S., Gasteiger, J., Holzgrabe, U., Polański, J., Sadowski, J., Tackentrup, A., Wagener, M. (1998) The use of self-organizing neural networks in drug design; in 3D QSAR in Drug Design (Kubinyi, H., Folkers, G. & Martin, Y.C., eds), vol. 2, pp. 273-299, ESCOM/ Kluwer, Dordrecht.
  • 25. Polański, J., Gasteiger, J., Wagener, M. & Sadowski, J. (1998) The comparison of molecular surfaces by neural networks and its application to quantitative structure activity studies. Quant. Struct. Act. Relat. 17, 27-36.
  • 26. Barlow, T.W. (1995) Self-organizing maps and molecular similarity. J. Mol. Graphics 13, 24-27.
  • 27. Polański, J. & Walczak, B. (1999) The comparative molecular surface analysis (CoMSA): A novel tool for molecular design. Computers and Chemistry (in press).
  • 28. Polański, J. (1996) Neural nets for the simulation of the molecular recognition within MS-WINDOWS environment. J. Chem. Inf. Comp. Sci. 36, 694-705.
  • 29. Polański, J. (1997) The receptor-like neural network for modeling corticosteroid and testosterone binding globulins. J. Chem. Inf. Comp. Sci. 37, 478-484.
  • 30. Polański, J. (1997) A neural network for the simulation of biological systems. J. Mol. Struct. (Theochem) 398-399, 567-571.
  • 31. Geladi, P. & Kowalski, B.R. (1986) Partial least-squares regression: A tutorial. Anal. Chim. Acta 185, 1-17.
  • 32. Coats, E. (1998) The CoMFA steroids as a benchmark dataset for development of 3D QSAR methods. Perspect. Drug Discov. Design 12/13/14, 199-213.
  • 33. Polański, J. (2000) The non-grid technique for modeling 3D QSAR using self-organizing neural network (SOM) and PLS analysis: Application to steroids and colchicinoids. SAR QSAR Env. Sci. (in press).
  • 34. Zhu, Q., Guo, Z., Huang, N., Wang, M. & Chu, F. (1997) Comparative molecular field analysis of a series of paclitaxel analogues. J. Med. Chem. 40, 4319-4328.
  • 35. Dahl, J.R., Staretz, M.E., Potenziano, J.L. & Hastie, S.B. (1998) 3D QSAR Analysis of Colchicine Analogs, http://chemiris.chem.binghamton.edu/HASTIE/QSAR_POSTER/qsar_poster.html
  • 36. Sun, L., McPhail, A.T., Hamel, E., Lin, C.M., Hastie, S.B., Chang, J.J. & Lee, K.H. (1993) Anitumor agents. 139. Synthesis and biological evaluation of thiocolchicine analogs 5,6-dihydro-6(S)-(acyloxy)- and 5,6-dihydro-6(S)- [(aryloxy)methyl]-1,2,3-trimethoxy-9-(methylthio)-8H-cyclohepta[a]naphtalen-8-ones as novel cytostatic and antitumor agents. J. Med. Chem. 36, 544-551.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv47i1p37kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.