Title variants
Languages of publication
Abstracts
It is argued that mechanical action can induce a unique chemical reaction, if enough mechanical energy is concentrated in the bonds involved in the process to bypass the activation energy. This can happen at crack tips, at the core of dislocations, or at the asperities of colliding or sliding surfaces. A mechanical reaction is always complex, as the macroscopic work is distributed among many possible reaction sites. In comparison, an elementary photochemical reaction is induced by a single photon, while thermochemical reactions rely on the accidental concentration of energy by thermal fluctuations. The paper also compares mechanochemical synthesis in a ball mill with reactions under well-defined loading conditions and mechanochemical experiments carried out on the molecular scale. Closer interaction among those branches of mechanochemistry is urged.
Discipline
- 82.30.-b: Specific chemical reactions; reaction mechanisms(for enzyme kinetics, see 82.39.Fk, and 87.15.R-; for protein folding dynamics, see 87.15.hm, and 87.15.Cc)
- 82.33.Pt: Solid state chemistry
- 81.20.Ev: Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation
Journal
Year
Volume
Issue
Pages
711-714
Physical description
Dates
published
2012-03
received
2011-09-28
Contributors
author
- Department of Physics, University of Maryland - Baltimore County, 1000 Hilltop Circle, Baltimore MD 21250, USA
References
- 1. Experimental and Theoretical Studies in Modern Mechanochemistry, Eds. F. Delogu, G. Mulas, Transworld Research Network, Trivandrum, Kerala, India 2010
- 2. C. Suryanarayana, Mechanical Alloying and Milling, Marcel Dekker, New York 2004
- 3. E.M. Gutman, Mechanochemistry of Materials, Cambridge International Science Publishing, Cambridge 1998
- 4. Z.V. Todres, Organic Mechanochemistry and its Practical Applications, Taylor and Francis, Boca Raton 2006
- 5. P.W. Bridgman, Phys. Rev. 48, 825 (1935)
- 6. A.-S. Duwez, S. Cuenot, C. Jerome, S. Gabriel, R. Jerome, S. Rapino, F. Zarbetto, Nature Nanotechnol. 1, 122 (2006)
- 7. F.D. Carlson, D.R. Wilkie, Muscle Physiology, Prentice-Hall, Englewood Cliffs, NJ 1974
- 8. L. Takacs, J. Met. 52, 12 (2000)
- 9. M.C. Lea, Am. J. Sci. 3rd Series 47, 377 (1894)
- 10. W. Ostwald, Handbuch der allgemeinen Chemie, Band I, Academische Verlagsgesellschaft, Leipzig 1919
- 11. M.K. Beyer, H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005)
- 12. G. Rubio-Bollinger, S.R. Bahn, N. Agraít, K.W. Jacobsen, S. Vieira, Phys. Rev. Lett. 87, 026101 (2001)
- 13. E.Z. da Silva, A.J.R. da Silva, A. Fazzio, Phys. Rev. Lett. 87, 256102 (2001)
- 14. M. Konopka, R. Turansky, J. Reichert, H. Fuchs, D. Marx, I. Stich, Phys. Rev. Lett. 100, 115503 (2008)
- 15. S.N. Zhurkov, Int. J. Fracture Mech. 1, 311 (1965)
- 16. P.G. Fox, J. Soria-Ruiz, Proc. R. Soc. Lond. A 317, 79 (1970)
- 17. F.Kh. Urakaev, Phys. Chem. Minerals 34, 351 (2007)
- 18. H.L. Tan, W. Yang, J. Mater. Sci. 31, 2653 (1996)
- 19. J.G. Swadener, M.I. Baskes, M. Nastasi, Phys. Rev. Lett. 89, 085503 (2002)
- 20. W. Spring, Bull. Soc. Chim. 39, 641 (1883)
- 21. V.I. Levitas, Phys. Rev. B 70, 184118 (2004)
- 22. P.H. Shingu, K.N. Ishihara, Mater. Trans. JIM 36, 96 (1995)
- 23. P.Yu. Butyagin, A.N. Streletskii, Phys. Solid State 47, 856 (2005)
- 24. F. Delogu, L. Schiffini, G. Cocco, Philos. Mag. A 81, 1917 (2001)
- 25. P. Bellon, R.S. Averback, Phys. Rev. Lett. 74, 1819 (1995)
- 26. V.V. Zyryanov, Russ. Chem. Rev. 77, 105 (2008)
- 27. F. Delogu, G. Cocco, Phys. Rev. B 74, 035406 (2006)
- 28. T.H. Courtney, Mater. Trans. JIM 36, 110 (1995)
- 29. B.B. Khina, F.H. Froes, J. Met. 48, 36 (1996)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-a121z3p27kz