Journal
Article title
Title variants
Languages of publication
Abstracts
In an experimental setup, consisting of quasi-two-dimensional square cell, the motion of monodisperse spherical steel balls is studied. The cell is vibrated horizontally to eradicate the compaction of balls due to gravity. By raising the number density of the steel balls, the dilute fluid has been gradually alternated into dense fluid. The temperature of granular media, along the driven and transverse directions, has been found to be anisotropic. Transition from granular gas to the liquid-like fluid has been observed. The radial distribution function of the balls in the cell is investigated for the authentication of the structural changes. Furthermore, the fast Fourier transformation for the 2D system is carried out to confirm these changes.
Discipline
- 64.60.-i: General studies of phase transitions(see also 63.70.+h Statistical mechanics of lattice vibrations and displacive phase transitions; for critical phenomena in solid surfaces and interfaces, and in magnetism, see 68.35.Rh, and 75.40.-s, respectively)
- 81.05.Rm: Porous materials; granular materials(for granular superconductors, see 74.81.Bd)
Journal
Year
Volume
Issue
Pages
699-702
Physical description
Dates
published
2012-03
received
2011-03-14
(unknown)
2012-01-18
Contributors
author
- Physics Department, Beijing Institute of Technology, 100081 Beijing, China
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
author
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
author
- Physics Department, Beijing Institute of Technology, 100081 Beijing, China
author
- Physics Department, Gomal University, D.I. Khan, Pakistan
author
- Physics Department, Beijing Institute of Technology, 100081 Beijing, China
References
- 1. I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993)
- 2. I. Goldhirsch, M. L. Tan, G. Zanetti, J. Sci. Comput. 8, 1 (1993)
- 3. S. McNamara, W. R. Young, Phys. Rev. E 50, R28 (1994)
- 4. W. Losert, D. G. W. Cooper, J.P. Gollub, Phys. Rev. E 59, 5855 (1999)
- 5. J.S. Olafsen, J.S. Urbach, Phys. Rev. Lett. 81, 4369 (1998)
- 6. D.L. Blair, A. Kudrolli, Phys. Rev. E 64, 050301 (2001)
- 7. H.M. Jaeger, S.R. Nagel, Science 255, 1523 (1992)
- 8. P.G. de Gennes, Rev. Mod. Phys. 2, S374 (1999)
- 9. H.M. Jaeger, S.R. Nagel, R.P. Behringert, Rev. Mod. Phys. 68, 1259 (1996)
- 10. R.M. Iverson, Rev. Geophys. 35, 245 (1997)
- 11. I. Goldhirsch, Ann. Rev. Fluid Mech. 35, 267 (2003)
- 12. P.G. de Gennes, Rev. Mod. Phys. 71, 374 (1999)
- 13. D.R.M. Williams, F.C. Mackintosh, Phys. Rev. E 54, R9 (1996)
- 14. S.J. Moon, M.D. Shattuk, J.B. Swift, Phys. Rev. E 64, 031303 (2001)
- 15. A. Barrat, E. Trizac, Phys. Rev. E 66, 051303 (2002)
- 16. E.L. Grossman, T. Zhou, E. Ben-Naim, Phys. Rev. E 55, 4200 (1997)
- 17. F. Rouyer, N. Menon, Phys. Rev. Lett. 85, 3676 (2000)
- 18. J.S. Vanzon, F.C. Mackintosh, Phys. Rev. Lett. 93, 038001 (2004)
- 19. I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993)
- 20. P.M. Reis, G. Ehrhart, A. Stephenson, Euro Phys. Lett. 66, 357 (2004)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-a121z3p25kz