Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 19 | 4 | 629-638

Article title

Adsorption of nitrate from aqueous solution onto modified cassava (Manihot esculenta) straw / Adsorpcja azotanów z roztworu wodnego na zmodyfikowanej słomie manioku Manihot esculenta

Content

Title variants

Languages of publication

EN

Abstracts

EN
The performance of a new anion exchanger prepared from raw cassava straw (RCS), for the removal of nitrate from aqueous solutions was evaluated in this study. The cassava straw was modified by epichlorohydrin in the presence of pyridine. The influencing factors, adsorption kinetics, and thermodynamics model of nitrate adsorption onto the modified cassava straw (MCS) were studied. The results showed that the zeta potentials of RCS and MCS were -20.5 mV and +37.3 mV, nitrogen contents (N %) of RCS and MCS were 0.43 and 4.96%, respectively. The best nitrate removal results was reached at 0.2 g of adsorbent dosage and pH range of 6.0÷12.0. The modified cassava straw adsorbed nitrate(V) quickly, reaching equilibrium within 30 minutes. The kinetics of nitrate adsorption at different initial concentrations (25, 50 and 75 mg/dm3) all fit a second order reaction. The adsorption rates were controlled by both membrane diffusion and intra-particle diffusion. The adsorption data fit the Freundlich adsorption isotherm and the Langmuir adsorption isotherm. The maximum adsorption capacity was 2.14, 2.00 and 1.81 mmol/dm3 at 293, 303, and 313 K, respectively.
PL
Dokonano oceny wydajności nowego wymieniacza anionowego, wytworzonego ze słomy surowego manioku (RCS), w usuwaniu azotanów z roztworów wodnych. Słomę manioku zmodyfikowano za pomocą epichlorohydryny w obecności pirydyny. Zbadano kinetykę adsorpcji, czynniki wpływające oraz model termodynamiczny adsorpcji azotanów na zmodyfikowanej słomie manioku (MCS). Wyniki pokazały, że potencjały zeta RCS i MCS wynosiły -20,5 mV i +37.3 mV, zawartości azotu (% N) w RCS i MCS wynosiły odpowiednio 0,43 i 4,96%. Najlepsze wyniki usuwania azotanów uzyskano, wykorzystując 0,2 g adsorbentu, w zakresie pH 6,0÷12,0. Zmodyfikowana słoma manioku szybko adsorbowała azotany(V), osiągając stan równowagi po 30 minutach. Kinetyka adsorpcji azotu z roztworów o różnych stężeniach początkowych (25, 50 i 75 mg/dm3) wskazuje na reakcję II rzędu. Szybkość procesu adsorpcji kontrolowała zarówno dyfuzja membranowa, jak i dyfuzja cząsteczkowa. Dane doświadczalne opisano za pomocą modeli izotermy Freundlicha i izotermy Langmuira. Maksymalne pojemności sorpcyjne wynosiły 2,14, 2,00 i 1,81 mmol/dm3 w temperaturach odpowiednio 293, 303 i 313 K.

Publisher

Year

Volume

19

Issue

4

Pages

629-638

Physical description

Dates

published
1 - 11 - 2012
online
13 - 11 - 2012

Contributors

author
  • School of Environmental Science and Resource, Guangxi Normal University, Guilin 541004, China
author
  • College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China
author
  • School of Environmental Science and Resource, Guangxi Normal University, Guilin 541004, China
  • Guangxi Key Laboratory of Environmental pollution control theory and technique
author
  • School of Environmental Science and Resource, Guangxi Normal University, Guilin 541004, China
author
  • School of Environmental Science and Resource, Guangxi Normal University, Guilin 541004, China
author
  • School of Environmental Science and Resource, Guangxi Normal University, Guilin 541004, China

References

  • [1] Yuan ZY, Zhao FR. Study on water eutrophication and biological control. China Rural Water and Hydropower. 2008;16:57-59.
  • [2] Afkhami A. Adsorption and electro-sorption of nitrate and nitrite on higharea carbon cloth: an approach to purification of water and waste-water samples. Carbon. 2003;41:1309-1328.
  • [3] Uygur A, Karg F. Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. J Environ Manage. 2004;71:9-14.
  • [4] Dolar D, Vukovic A, Asperger D, Kosutic K. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. J Environ Sci Eng. 2011;23:1300-1307.[WoS]
  • [5] Pinter A, Batista J. Improvement of an integrated ion-exchange/catalytic process for nitrate removal by introducing a two-stage denitrification step. Appl Catalys B-Environ. 2006;63:150-159.
  • [6] Cevaal JN, Surratt WB, Burke JE. Nitrate removal and water quality improvements with reverse osmosis for Brighton. Desalination. 1995;103:101-111.[Crossref]
  • [7] Baes AU, Jung YH, Han WW, Shin HS. Improved brine recycling during nitrate removal using ion exchange. Water Research. 2002;36:3330-3340.
  • [8] Xu X, Gao BY, Wang WY, Yue QY, Wang Y, Ni SO. Effect of modifying agents on the preparation and properties of the new adsorbents from wheat straw. Bioresour Technol. 2010;5:1477-1481.[Crossref][WoS]
  • [9] Xu X, Gao BY, Zhong QQ, Yue QY, Li Q. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties. J Hazard Mater. 2011;186:206-211.[WoS]
  • [10] Cao W, Dang Z, Zhou XQ, Yi XY, Wu PX, Zhu NW, Lu GN. Removal of sulphate from aqueous solution using modified rice straw: Preparation, characterization and adsorption performance. Carbohydrate Polymer. 2011;85:571-577.
  • [11] Wang WY, Yue QY, Xu X, Gao BY, Zhang J, Li Q, Xu JT. Optimized conditions in preparation of giant reed quaternary amino anion exchanger for phosphate removal. Chem Eng J. 2010;157:161-167.
  • [12] Anirudhan TS, Unnithan MR. Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery. Chemosphere. 2007;66:60-66.[WoS][PubMed][Crossref]
  • [13] Chai QH, Shen W, Zhang AL, Han WJ. Chinese cassava industry price supply elasticity. J Tsinghua University (Sci Technol). 2009;49:897-900.
  • [14] Tao GC, Xie GH, Orberg H, Xiong SJ. A feasibility study on using cassava stems for the production of bioenergy in Guangxi Zhuang Autonomous Region. China. Eng Sci. 2011;13:107-112.
  • [15] Du D, Hu ZY, Pu GQ. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Conversion and Manage. 2006;47:1686-1699.
  • [16] Baes AU, Okuda T, Nishijima W. Adsorption and ion exchange of some groundwater anion contaminants in an amine modified coconut coir. Water Sci Technol. 1997;35:89-95.
  • [17] Nakamura S, Amano M, Saegusa Y. Preparation of aminoalkyl celluloses and their adsorption and desorption of heavy metal ions. J Appl Polymer Sci. 1992;45: 65-271.
  • [18] Orlando US, Baes AU, Nishijima W, Okada M. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials. Bioresour Technol. 2002;83:195-198.
  • [19] APHA. Standard Methods for Examination of Water and Wastewater. Washington, D.C.: American Public Health Association; 1989.
  • [20] Wang XH, Hao C, Zhao Q. Synthesis of electrophoresis of cationic lignin-amine. Chem Res Appl. 2004;06:817-818.
  • [21] Wang Y, Gao BY, Yue WW, Yue QY. Adsorption of nitrate from aqueous solution by modified corn residues. Acta Sci Circumstantiae. 2007;27:1458-1462.
  • [22] Namasivayam C, Holl WH. Quaternized biomass as an anion exchanger for the removal of nitrate and other anions from water. J Chem Technol Biotechnol. 2005;80:164-168.
  • [23] Yang XY, Bushra AD. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid and Interface Sci. 2005;287:25-34.
  • [24] Mohana SV, Raoa NC, Karthikeyan J. Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. J Hazard Mater. 2002;90:189-204.[Crossref]
  • [25] Yu MF, Hu XB, Yao JP, Zhu XY. Preparation of activated carbon from rice husk and its adsorption capacity of chromium in sewage. Acta Agriculturae Boreali-Occidentalis Sinica. 2007;16:26-29.
  • [26] Park HJ, Na CK. Preparation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property. J Colloid and Interface Sci. 2006;301:46-54.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10216-011-0045-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.