PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 19 | 3 | 433-438
Article title

Treatment of the Processing Wastewaters Containing Heavy Metals with the Method Based on Flotation

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the studies carried out at full technological scale was to indicate optimal systems of the two-stage precipitation and coagulation (PIX 113 - SAX 18, PAX XL1 - SAX 18, ALCAT 102 - lime milk and SAX 18 - PAX 16) in the process of eliminating heavy metals from wastewaters made in the processing plant producing sub-systems for domestic appliances. Precipitated pollutions were thickened by flocculation and separated by hydrogen peroxide enhanced pressure flotation. The experimental installation of maximal flow capacity: 10.0 m3/d consisted of: the storage-equalization tank, the processing pipe reactor, the pressure flotation station, and the reagent preparation and dosing station. Optimal doses of reagents and a flocculent as well as pressure and saturation time were defined for which maximal reductions in the load of heavy metals were achieved. The usefulness of hydrogen peroxide as a means of enhancing flotation was tested. The use of two-stage precipitation permitted the reduction in heavy metals (Cd, Cu, Cr, Ni, Sn, Zn), eg by applying ALCAT 102 - lime milk at the level exceeding 80%.
PL
Przeprowadzono badania w pełnej skali technologicznej, mające na celu wytypowanie optymalnych układów dwustopniowego strącania i koagulacji (PIX 113 - SAX 18, PAX XL1 - SAX 18, ALCAT 102 - mleko wapienne i SAX 18 - PAX 16) w procesie usuwania metali ciężkich ze ścieków z linii wytwarzania podzespołów do sprzętu gospodarstwa domowego. Wytrącone zanieczyszczenia zagęszczano flokulacyjnie i wydzielano techniką flotacji ciśnieniowej wspomaganej nadtlenkiem wodoru. Instalacja doświadczalna o maksymalnej przepustowości 10,0 m3/d składała się z ziemnego zbiornika magazynująco-uśredniającego, rurowego reaktora procesowego, stacji flotacji ciśnieniowej oraz stacji przygotowania i dozowania reagentów. Wyznaczono optymalne dawki reagentów oraz flokulantu, a także ciśnienia i czasu saturacji, dla których zachodziły maksymalne redukcje ładunku metali ciężkich. Sprawdzono przydatność nadtlenku wodoru w procesie wspomagania flotacji. Zastosowanie dwustopniowego strącania pozwoliło na uzyskanie redukcji metali ciężkich (Cd, Cu, Cr, Ni, Sn, Zn) np. za pomocą układu ALCAT 102 - mleko wapienne na poziomie przekraczającym 80%.
Publisher
Year
Volume
19
Issue
3
Pages
433-438
Physical description
Dates
published
1 - 1 - 2012
online
16 - 7 - 2012
References
  • Kong IC, Bitton G, Koopman B, Jung KH. Heavy metal toxicity testing in environmental samples. Rev Environ Contam Toxicol. 1995;142(3):119-147.[PubMed]
  • Rüffer H, Rosenwinkel KH. Taschenbuch der Industrieabwasserreinigung. München Wien: Oldenbourg Verlag, 1991:503-530.
  • Tünay O, Kabdasli NI, Tasli R. Pretreatment of complexed metal wastewaters. Water Sci Technol. 1994;29(9):265-274.
  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J. 2009;44(1):19-41.[Crossref][WoS]
  • Sud D, Mahajan G, Kaur M. Agricultural waste materials as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Biores Technol. 2008;99(14):6017-6027.[Crossref]
  • Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores Technol. 2007;98(12):2243-2257.[Crossref]
  • Kiptoo JK, Ngila JC, Sawula GM. Speciation studies of nickel and chromium in wastewater from an electroplating plant. Talanta. 2004;64(1):54-59.[Crossref][PubMed]
  • Barakat MA. New trends in removing heavy metals from industrial wastewater. Arab J Chem. 2011;4(4):361-377.
  • Fenglian F, Qi W. Removal of heavy metal ions from wastewaters: A review. J Environ Manage. 2011;92(3):407-418.
  • Kurniawan TA, Chan GYS, Lo WH, Babel S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J. 2006;118(1-2):83-98.[Crossref]
  • Al Aji B, Yavuz Y, Koparal AS. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep Purif Technol. 2012;86:248-254.
  • Rubio J, Souza ML, Smith RW. Overview of flotation as a wastewater treatment technique. Mineral Eng. 2002;15(3):139-155.[Crossref]
  • Peleka EN, Lazaridis NK, Matis KA. A hybrid flotation: Microfiltration cell for effluent treatment. Int J Environ Waste Manage. 2011;8(3-4):273-285.[Crossref]
  • Zamboulis D, Pataroudi SI, Zouboulis AI, Matis KA. The application of sorptive flotation for the removal of metal ions. Desalination. 2004;162(1-3):159-168.[Crossref]
  • Santander M, Valderrama L, Guevara M, Rubio J. Adsorbing colloidal flotation removing metals ions in a modified jet cell. Mineral Eng. 2011;24(9):1010-1015.[Crossref]
  • ---
  • Kang YW, Cho MJ, Hwang KY. Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res. 1999;33(5):1247-1251.[Crossref]
  • Żak S. Problem of correction of the chemical oxygen demand values determined in wastewaters treated by methods with hydrogen peroxide. Proc ECOpole. 2008;2(2):409-414.
  • Talinli I, Anderson GK. Interference of hydrogen peroxide on the standard COD test. Water Res. 1992;26(1):107-110.[Crossref]
  • Nurchi VM, Villaescusa I. Sorption of toxic metal ions by solid sorbents: a predictive speciation approach based on complex formation constants in aqueous solution. Coord Chem Rev. 2012;256(1-2):212-221.[Crossref][WoS]
  • Charerntanyarak L. Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol. 1999;39(10-11):135-138.[Crossref]
  • ---
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10216-011-0033-8
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.